Реферат по дисциплине: Технохимический контроль сельскохозяйственного сырья и продуктов переработки на тему: "Методы определения белков"

У нас на сайте представлено огромное количество информации, которая сможет помочь Вам в написании необходимой учебной работы. 

Но если вдруг:

Вам нужна качественная учебная работа (контрольная, реферат, курсовая, дипломная, отчет по практике, перевод, эссе, РГР, ВКР, диссертация, шпоры...) с проверкой на плагиат (с высоким % оригинальности) выполненная в самые короткие сроки, с гарантией и бесплатными доработками до самой сдачи/защиты - ОБРАЩАЙТЕСЬ!

Реферат по дисциплине:

Технохимический контроль сельскохозяйственного сырья и продуктов переработки

на тему:

"Методы определения белков"

Содержание:

1. Введение………………………………………………………………………...3

2. Строение белков……………………………………………………………......4

3. Классификация белков…………………………………………………………6

4. Физико-химические свойства белка…………………………………………12

5. Биологическая роль белка……………………………………………………13

6. Определение белковой фракции пищи:

6.1. Качественные реакции на белок…………………………………………...16

6.1.1. Цветные реакции………………………………………………………….16

6.1.2. Реакции осаждения……………………………………………………….18

6.2. Количественное определение белка……………………………………….18

6.3. Ускоренный метод определения белков в готовых блюдах и рационах...20

7. Список используемой литературы…………………………………………...22

 

 

 

 

1. Введение

Белками, или белковыми веществами называют высокомолекулярные (молеку- лярная масса варьирует от 5-10 тыс. до 1 млн. и более) природные полимеры, моле- кулы которых построены из остатков аминокислот, соединенных амидной (пепти- дной) связью.

Белки также называют протеинами (от греч. «протоc» - первый, важный). Число остатков аминокислот в молекуле белка очень сильно колеблется и иногда достигает нескольких тысяч. Каждый белок обладает своей, присущей ему последовательнос- тью расположения аминокислотных остатков. Белок можно рассматривать как слож- ный полимер аминокислот. Белки входят в состав всех живых организмов, но особо важную роль они играют в животных организмах, которые состоят из тех или иных форм белков (мышцы, покровные ткани, внутренние органы, хрящи, кровь). Растения синтезируют белки (и их составные части a-аминокислоты) из углекислого газа СО2 и воды Н2О за счет фотосинтеза, усваивая остальные элементы белков (азот N, фосфор Р, серу S, железо Fe, магний Mg) из растворимых солей, находящихся в почве.

Белки выполняют разнообразные биологические функции: пластическая, транс- портная, защитная, энергетическая, каталитическая, сократительная, регуляторная и другие.(см.таблицу№5). Белки, поступающие в организм с животной и растительной пищей, гидролизуется конечном счете до a-аминокислот. Наш организм устроен так, что часть a-амино- кислот –незаменимые аминокислоты -должна обязательно содержаться в пище. Для взрослого человека их всего 8, для детей 10. А вот остальные– заменимые аминокис- лоты организм синтезирует сам - был бы в достатке азот, без которого ни один белок не может существовать. Этот процесс осуществляется в печени.

Белки выполняют функцию биокатализаторов-ферментов, ре­гулирующих скорость и направление химических реакций в организме. В комплексе с нуклеиновыми кислотами обеспечивают функции роста и передачи наследственных признаков, являются структурной основой мышц и осу­ществляют мышечное сокращение.

Белок представляет собой полипептид, содержащий сотни или тысячи аминокислотных звеньев.

 

 

 

 

 

 

 

 

2. Строение белков

Молекулы белков выглядят как линейные полимеры. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто обозначают пептидами, при большей степени полимеризации — белками, но такое деление очень относительно [2,3,4,5].

Пептидные связи в белке формируются в результате взаимодействия α-карбоксильной группы (-COOH) одной аминокислоты с α-аминогруппой (-NH2) другой аминокислоты.

Выделяют 4 уровня структурной организации белков:

1. Первичная структура — последовательность аминокислотных остатков в полипептидной цепи (рис.1).

Важными характеристиками первичной структуры становятся устойчивые сочетания аминокислотных остатков, несущие определённую функцию [2,4,5].

Рисунок 1 – Первичная структура белков.

2. Вторичная структура — локальное упорядочивание части полипептидной цепи, уравношенное водородными связями (рис.2).

Рисунок 2 – Вторичная структура белков.

Основные типы вторичной структуры белков:

- α-спирали — плотные витки вокруг длинной оси молекулы.

- β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей.

- π-спирали и др. [2,4,5].

3. Третичная структура — пространственная форма полипептидной цепи (рис.3). Включает части вторичной структуры, уравновешенные разными видами взаимодействий, но основная роль принадлежит гидрофобным [2,4,5].

Рисунок 3 – Третичная структура белков.

4. Четвертичная структура (субъединичная, доменная) — взаимное местоположение нескольких полипептидных цепей в структуре единого белкового комплекса (рис.4). Молекулы белка с четвертичной структурой синтезируются на рибосомах по отдельности и только затем формируют общую надмолекулярную структуру. В структуре такого белка могут быть идентичные и различающиеся полипептидные цепочки. В уравновешивании четвертичной формы выделяют взаимодействия, как в третичной структуре. Надмолекулярные комплексы могут включать десятки молекул белка [2,4,5].

Рисунок 4 – Четвертичная структура белков.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Классификация белков

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

 

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 5,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 5. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

 

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

 

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

 

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин,  принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe2+ (рис. 19). При  взаимодействии гемоглобина с кислородом образуется оксигемоглобин.  В альвеолах легких  гемоглобин  насыщается кислородом.  В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением  кислорода,  который  используется клетками:

Гемоглобин может  образовывать  соединение  с оксидом углерода (II), которое называется карбоксигемоглобином:

.

Карбоксигемоглобин не способен  присоединять  кислород. Вот почему происходит отравление угарным газом. 

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 6).

Рис. 6. Гем

 

 

 

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20). 

 

Рис. 20. Фосфопротеин 

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки  фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н

 протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

 

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 7). 

 

Рис. 7. Липопротеины в клеточной мембране 

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие  с ними ковалентную связь.

 

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 8).

 

 

Рис. 8. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

 

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

 

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции (рис. 9).

 

 Рис. 9. Клеточная мембрана.

 

Питательные и запасные белки

Питательным белком является казеин, основная функция которого  заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

 

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

 

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки,  способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые  другие вещества. На рис. 10 схематически показана работа переносчика глюкозы.

 

Рис. 10. Транспорт глюкозы через клеточную мембрану

 

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

 

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген  фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

 

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных  рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом  которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 11).

 

 Рис.11. Передача внешних сигналов в клетку

 

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

 

 

 

 

 

 

 

4. Физико-химические свойства белка

Физико-химические свойства белков обусловлены составом и количеством входящих в их молекулы остатков аминокислот. Молекулярные массы полипептидов сильно колеблются: от нескольких тысяч до миллиона и более. Химические свойства белковых молекул разнообразны, включают в себя амфотерность, растворимость, а также способность к денатурации.

Амфотерность

Поскольку в состав белков входят и кислые, и основные аминокислоты, то всегда в составе молекулы будут свободные кислые и свободные основные группы (СОО- и NН3+ соответственно). Заряд определяется соотношением основных и кислых аминокислотных групп. По этой причине белки заряжены “+”, если уменьшается рН, и наоборот, “-”, если рН увеличивается. В случае, когда рН соответствует изоэлектрической точке, белковая молекула будет иметь нулевой заряд. Амфотерность важна для осуществления биологических функций, одной из которых является поддержание уровня рН в крови.

Растворимость

Классификация белков по свойству растворимости уже была приведена выше. Растворимость белковых веществ в воде объясняется двумя факторами:

·         заряд и взаимное отталкивание белковых молекул;

·         формирование гидратной оболочки вокруг белка – диполи воды взаимодействуют с заряженными группами на внешней части глобулы.

Денатурация

Физико-химическое свойство денатурации представляет собой процесс разрушения вторичной, третичной структуры белковой молекулы под влиянием ряда факторов: температуры, действии спиртов, солей тяжелых металлов, кислот и других химических агентов.

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Биологическая роль белка

Белки – жизненно необходимые и незаменимые вещества, без которых невозможны не только рост и развитие организма, но и сама жизнь. Они являются основным пластическим материалом для построения всех клеток, тканей и органов тела человека, образования ферментов, гормонов и других соединений, выполняющих в организме особо важные и сложные функции.

Белки составляют 54 % массы тела человека. Все ферменты, участвующие в превращениях и усвоении белков и других пищевых веществ, имеют белковую природу, поэтому при недостатке белка в пище снижается ферментативная активность организма и развиваются нарушения как в переваривании, так и в обмене всех веществ – белков, жиров и углеводов. При дефиците белка нарушается образование гормонов и, как следствие, работа сердечно-сосудистой системы, опорно-двигательного аппарата, мочеполовой и других систем организма.

Кроме того, белок в организме играет большую защитную роль. Из особого белка глобулина формируются антитела – вещества, определяющие защитные силы организма, невосприимчивость человека к инфекциям. Белки обезвреживают попавшие в организм человека яды и токсины, выполняют антитоксическую роль. Достаточное количество белка в пище повышает устойчивость к стрессам, которые могут быть причиной многих заболеваний. Помимо перечисленных, белок выполняет много других функций: обеспечение процессов свертывания крови, перенос кислорода с кровью, мышечное сокращение, передача наследственных признаков, транспорт различных веществ в организме, образование макроэргических соединений (АТФ) и т. д.

Как источник энергии, белки имеют второстепенное значение, так как могут быть заменены жирами и углеводами. При окислении в организме 1 г белка дает 4 ккал (16,7 кДж). Именно многообразие свойств белка, его участие в основных жизненных процессах подтверждают, что белок является основой жизни. Этот факт отмечали еще древние греки: другое название белков – протеины (от слова «протос», что означает «главный, единственный»).

Для того чтобы обеспечить все важнейшие жизненные процессы, необходимо достаточное поступление белка в организм. При этом белок, в отличие, например, от жиров и углеводов, не может синтезироваться в организме, не заменяется другими пищевыми веществами, не накапливается про запас. В то же время он частично расходуется на образование жира и углеводов при их дефиците в пищевом рационе. Единственным источником белков служит пища, поэтому белки пищи являются абсолютно необходимой составной частью рациона человека.

Белки пищи – сложные органические соединения, состоящие из большого количества аминокислот (более 20). Не все аминокислоты равноценны по своему значению для организма. Они делятся на заменимые и незаменимые (или жизненно необходимые). Заменимые аминокислоты названы так потому, что они могут синтезироваться в организме из других, незаменимые – в организме не синтезируются и обязательно должны содержаться в пище в достаточном количестве. Незаменимые аминокислоты (валин, метионин, лейцин, триптофан, лизин и др.) содержатся в наибольшем количестве и наилучших соотношениях в белках животного происхождения (яйца, молоко, мясо, рыба и т. д.), то есть в белках высокой биологической ценности, отличающихся сбалансированностью аминокислот, легкой перевариваемостью и хорошей усвояемостью. Заменимые аминокислоты содержатся преимущественно в белке растительных продуктов (хлеб, крупа, бобовые), и в случае дефицита этих продуктов в рационе на синтез незаменимых аминокислот в организме расходуются заменимые аминокислоты.

Чтобы обеспечить организм достаточным количеством незаменимых и заменимых аминокислот, в состав пищевого рациона должны входить как более полноценные (животные) белки, содержащие все незаменимые аминокислоты, так и менее полноценные (растительные). Наиболее благоприятно соотношение животного и растительного белка в рационе 1:1.

Чтобы избежать дефицита тех или других аминокислот, рекомендуется сочетать в каждом приеме пищи менее ценные растительные белки (хлеб, крупы, бобовые) с белками животного происхождения (молоко, творог, сыр, мясо, рыба, яйца) – это могут быть каши на молоке, хлеб с молоком, мучные изделия с творогом, вареники, мучные изделия с мясом, котлеты с макаронами и т. п. В то же время сочетание круп и злаковых продуктов с капустой, картофелем менее оправданно, так как не улучшает аминокислотного состава рациона. Важен тот факт, что при правильном сочетании растительного и животного белка улучшается усвоение растительных белков, из которых в кишечнике всасывается 60-80 % аминокислот, тогда как из белков животных продуктов – более 90 %.

Наиболее быстро перевариваются белки молочных продуктов и рыбы, затем мяса (белки говядины быстрее, чем свинины и баранины), хлеба и круп (быстрее – белки пшеничного хлеба из муки высших сортов и манной крупы). Нарушают переваривание белка некоторые содержащиеся в горохе, фасоли, сое вещества, которые снижают переваривающую активность пищеварительных ферментов. Тепловая обработка, длительное разваривание, измельчение, протирание улучшают переваривание белков.

Потребность человека в пищевом белке может изменяться в зависимости от пола, возраста, уровня физической активности, интенсивности труда, при некоторых заболеваниях.

В среднем потребность взрослого человека в белке составляет 80-100 г в сутки, или 1,1-1,3 г белка на 1 кг массы тела, что обеспечивает 10-15 % энергетических потребностей организма за счет белка. Потребность растущего организма в белке выше и зависит от возраста. Если на первом году жизни ребенок должен получать более 4 г белка на 1 кг массы тела, то в последующие годы потребность в белке снижается. Так, потребность в белке для девушек составляет в среднем 90 г, для юношей – 100 г в сутки.

Высокая потребность в белке у детей и подростков объясняется тем, что в растущем организме преобладают синтетические процессы и белок пищи необходим не только для поддержания азотистого равновесия, но и для обеспечения роста, увеличения массы тела, формирования скелета и мускулатуры. Количество белков животного происхождения, содержащих незаменимые аминокислоты, которые особенно необходимы для растущего организма, должно составлять не менее 60 % от общего количества белка в рационе.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Определение белковой фракции пищи

2.1. Качественные реакции на белок

Для качественного обнаружения белка предложено много реакций( цветный и осадочные ).

2.1.1. Цветные реакции

Биуретова реакция. К раствору белка добавляют равный объем 10% раствора едкого натра и затем по каплям 0,1% раствор сернокислой меди. Жидкость приобретает фиолетовое окрашивание, переходящее в красное, если, наряду с белками , имеются альбумозы и пептоны. Реакция обусловлена наличием в белковой молекуле группировок

—CO—NH, т.е. пептидных связей. Продукты гидролиза белка ( аминокислоты и амиды) после достаточного разбавления этого эффекта не дают эффекта и потому биуретовой реакцией можно пользоваться для установления конца гидролиза белка.

Появление сине-фиолетового окрашивания при описанной реакции обусловлено образованием Сu—Na – комплексной соли биурета.

Следует избегать прибавления избытка медного купароса, так как голубая получающегося гидрата окиси меди может маскировать реакцию.

Кроме белков, биуретовую реакцию дают: биурет (NH3—СО—HN—СО—NH3),

оксамид (H3N—СО—СО—NH3), глицинамид (H3N—СH3—СО—NH3),малонамид

(H3N—СО—СH3—СО—NH3), а также следующие аминокислоты а достаточно концентрированных растворах: гистидин, серин и треонин. Таким образом, биуретовая реакция не является строго специфичной для полипептидных цепей.

Присутствие в исследуемом растворе MgSO4 и (NH5) 2SO4 препятствует биуретовой реакции. При налички аммонийных солей следует употреблять большой избыток едкой щелочи.

Нингидриновая реакция. К 3мл нейтрального водного раствора белка добавляют 1 мл свежеприготовленного 0,1% раствора нингидрина(трикетогидринденгидрата);

Смесь нагревают до кипения и через минуту охлаждают. Появляется синее окрашивание. Объясняется это ем, что нингидрин дает окрашивание(обычно синее) с любой α- аминокислотой, а так как любой белок содержит α-аминокислоты, то нингидриновая реакция получается со всеми без исключения белками. Химизм реакции можно представить в следующем виде:

Восстановленный нингидрин с аммиаком и второй молекулой нингидрина образует окрашенный в синий цвет продукт конденсации.

Нужно иметь в виду, что аммонийные соли и β-аланин также дают положительную нингидриновую реакцию. Добавление аскорбиновой кислоты повышает чувствительность реакции.

Ксантопротеиновая реакция. К раствору белка приливают концентрированной азотной кислоты(уд. вес. 1,4); при этом белок выпадает в осадок. При нагревании осадок частью растворяется и жидкость окрашивается в желтый цвет. При этом происходит образование нитросоединений циклических аминокислот: тирозина и триптофана, которые содержатся в подавляющем большинстве белков.

Если полученный желтый раствор охладить, а затем осторожно добавить немного раствора едкой щелочи или аммиака, то появляется красновато-оранжевое окрашивание, обусловленное образованием солей нитроновых кислот.

Реакция Адамкевича. Аминокислота триптофан в кислой среде, взаимодействуя с альдегидами кислот, образует продукты конденсации красно-фиолетового цвета.

К одной капле белка прибавляют 10 капель уксусной кислоты. Наклонив пробирку, осторожно по стенке добавляют по каплям 0,5 мл серной кислоты так, чтобы жидкости не смешивались. При стоянии пробирки на границе жидкостей появляется красно-фиолетовое кольцо.

         Реакция Фоля. Аминокислоты, содержащие сульфгидрильные группы - SH, подвергаются щелочному гидролизу с образованием сульфида натрия Na2S. Последний, взаимодействуя с плюмбитом натрия (образуется в ходе реакции между ацетатом свинца и NaOH), образует осадок сульфида свинца PbS черного или бурого цвета.

К 5 каплям раствора белка прибавляют 5 капель реактива Фоля и кипятят 2-3 мин. После отстаивания 1-2 мин. появляется черный или бурый осадок.

 

 

 

2.1.2. Реакции осаждения

Для белков характерны реакции осаждения солями и гидратами окисей тяжелых металлов и некоторыми кислотами. Приведем важнейшие из этих реакций.

Осаждение белков тяжелыми металлами

Осаждение белков солями тяжелых металлов производится обычно в нейтральном млм слабокислом растворе. Полноте осаждения часто способствует присутствие солей щелочных металлов—К SO4, MgSO4 и др.

Следует иметь ввиду, что во многих случаях образующиеся осадки могут растворяться в избытке реактива.

Хлорное железо и уксусное железо осаждают белки из их растворов; осадок легко растворяется в избытке хлорного железа.

Хлорная ртуть (сулема) осаждает белки и продукты частичного гидролиза их- пептоны.

Уксусный свинец - нейтральный и основной (свинцовый уксус) является хорошим осадителем белков.

Г и д р а т о к и с и м е д и и г и д р а т о к и с и ц и н к а осаждают белки.

Гидрат окиси цинка, кроме белков, осаждает еще глутатион, мочевую кислоту и креатинин.

Осаждение белков кислотами

При осаждении белков кислотами происходит образование солей, устойчивых в кислой среде. В избытке реактива осадки могут раствориться.

Трихлоруксусная и метафосфорная кислота осаждают только белки.

Сульфосалициловая кислота в форме кислого суфосалициловокислого натра и Вольфрамовая кислота являются также осадителями белков.

2.2. Количественное определение белка

Среди азотистых веществ, входящих в состав пищевых продуктов, растительного и животного происхождения главное место принадлежит белкам. В связи с этим содержание белков в пищевых продуктах часто определяют на основании найденного в продукте количества общего азота; при этом при пересчете азота на белок исследуемого продукта учитывают процентное содержание азота в белке данного продукта; так, например, если азот составляет 16% белка продукта, то, очевидно, для пересчета найденного количества азота на белок нужно весовое количество азота умножить на 6,25. Таким образом, для данного случая пересчетным коэффициентом является число 6,25.

Этот способ расчета белка дает представление о содержании в продуктах не чистого белка, а так называемого «сырого протеина», так как вместе с азотом белка по обычно применяемому методу Кьельдаля определения азота, а пищевых продуктах одновременно определяется азот и других соединений, могущих присутствовать в пищевых продуктах; сюда относятся альбумозы и пептоны, аминокислоты, нуклеиновые кислоты, амиды, азотосодержащие экстрактивные вещества (креатин, мочевина, мочевая

кислота), алкалоиды(кофеин, теин, теобромин), некоторые глюкозиды( соланин, вицин, синигрин), некоторые азотосодержащие неорганические соединения( аммонийные и азотнокислые соли, свободный аммиак) и др. В отдельных случаях содержание некоторых из перечисленных веществ может достигать заметных размеров: так, содержание в мясе азотосодержащих экстрактивных веществ доходит до 10%.

Метод Кьельдаля состоит в том, что органические азотосодержащие вещества подвергаются разрушению с помощью крепкой серной кислоты с применением катализатора и при нагревании. При этом углерод и водород органических соединений полностью окисляются до СО2 и Н2О за счет кислорода, освобождающегося при восстановлении серной кислоты. Азот органических веществ отщепляется в виде аммиака, который с серной кислотой образует сульфат аммония.

При помощи крепкой щелочи разлагают затем сульфат аммония и освободившийся при этом аммиак отгоняют и улавливают в титрованный раствор серной кислоты, который берется с избытком. Обратным титрованием определяют этот избыток, а отсюда делают вывод о количестве кислоты, связавшейся с аммиаком и о количестве азота сожженного вещества.

Для определения количества белка в образце используется методика:

1.Биуретовый метод

2.Микробиуретовый метод

3.Метод Бредфорда

4.Метод Лоури

5.Спектрофотометрический метод

Биуретовый метод основан на образовании биуретового комплекса (имеет фиолетовый цвет) пептидных связей белков с двухвалентными ионами меди. В методе используют т. н. биуретовый реактив, состоящий из KOH, CuSO4 и цитрата натрия (или тартрата натрия). В образовавшемся комплексе медь связана с 4 азотами координационными связями, а с 2 кислородами — электростатическими. Полноценный комплекс образуется лишь с пептидами, состоящими более чем из 4 остатков.

Интенсивность окраски раствора прямо пропорциональна концентрации белка в сыворотке и определяется фотометрически.

К достоинствам метода стоит отнести его низкую чувствительность к посторонним веществам, невысокую погрешность.

Микробиуретовый метод основан на образовании окрашенного в фиолетовый цвет комплекса, образующегося в результате взаимодействия пептидных связей с Cu2+ в щелочной среде. К 0,2 мл ПМ лимфоцитов, сыворотки или плазмы добавляли 3,5 мл раствора NаОН и 0,2 мл реактива Бенедикта. Выдерживали 15 мин при комнатной температуре и спектрофотометрировали на СФ — 46 при 330 нм. Построение калибровочного графика проводили по стандартному раствору белка.

Метод Брэдфорда один из наиболее популярных методов, используемый для определения концентрации белка в растворе. Метод определения концентрации белка по Брэдфорд успешно используется в случае измерения растворов с низкой концентрацией белка и растворов, содержащих компоненты, также обладающие значительным поглощением при 280 нм. Метод определения концентрации белка по Брэдфорд, так же, как и метод Лоури и BSA, требует построения стандартной калибровочной кривой перед измерением концентрации неизвестного белка.

Универсальность метода и его гибкость позволяют создавать модификации процедуры измерений для различных целей и типов измерений.

Метод Брэдфорд основан на сдвиге спектра поглощения кумасси (Coomassie Blue) в сторону значений 595 нм прямо пропорционально концентрации содержащегося в растворе белка. Кумасси образует комплекс с белком; этот комплекс измеряют при длине волны 595 нм. абсорбционная фотометрия комплекса кумасси / белок имеет очень высокую чувствительность и эффективна даже в случае следовых концентраций белков.

Метод Лоури. Метод количественного определения белка, основанный на измерении концентрации окрашенных продуктов, образующихся в результате сочетания двух химических реакций: биуретовой реакции на пептидную связь и взаимодействия реактива Фолина-Чокалтеу с ароматическими аминокислотами.

Спектрофотометрический метод. Спектрофотометрия (абсорбционная) — физико-химический метод исследования растворов и твёрдых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—400 нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в спектрофотометрии зависимость интенсивности поглощения падающего света от длины волны. Спектрофотометрия широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах).

2.3. Ускоренный метод определения белков в готовых блюдах и рационах

Для ускоренного определения белков в готовых блюдах и рационах В. А. Бабин и Н.Н. Мусерский разработали метод, представляющий модификацию метода, предложенного Джеремилло.

Сущность метода сводится к тому, что вещество, содержащее белки, минерализуется в металлической гильзе (медь, нержавеющая сталь, никель), которая герметически закрывается ввинчивающейся металлической пробкой с газоотводной трубкой, через которую газообразный аммиак и другие газы, образующиеся при минерализации, поступают в приемную колбу с серной кислотой.

Минерализация белков производится едким натром, растворенным в расплавленном уксусном натре при нагревании гильзы. Процесс минерализации белка происходит быстро ( в течении 2-3 минут) при температуре нагрева не выше 325ºС, что является преимуществом данного метода перед другими методами количественного определения белка.

 

 

7. Список используемой литературы

1) https://refdb.ru/look/1601065.html

2) StudFiles:  https://studfile.net/preview/8077104/

3)В.И.Рязепкие, В.Н.Бурдь Школьные Олимпиады: «Основы Биохимии»: https://ebooks.grsu.by/osnovi_biohimii/10-klassifikatsiya-belkov.htm#:~:text=%D0%91%D0%B5%D0%BB%D0%BA%D0%B8%20%D0%BF%D0%BE%20%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D1%83%20%D0%BC%D0%BE%D0%B6%D0%BD%D0%BE%20%D1%80%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D1%8C,%D0%A0%D0%9D%D0%9A%D0%B0%D0%B7%D0%B0%20%D0%B8%20%D0%BC%D0%BD%D0%BE%D0%B3%D0%B8%D0%B5%20%D0%B4%D1%80%D1%83%D0%B3%D0%B8%D0%B5%20%D1%84%D0%B5%D1%80%D0%BC%D0%B5%D0%BD%D1%82%D1%8B

4) Научные Статьи. Ру: https://nauchniestati.ru/spravka/fiziko-himicheskie-svojstva-belkov/

5) ВикиЧтение: https://eda.wikireading.ru/131296