Pyrus communis / Peer / Poire /

Botanically, it is a "pome fruit” produced in the Rosaceae family of trees, in the Pyrus genus. Pome fruit plants are an average sized trees found in semi-tropical regions around the northern hemisphere. They bear medium-size fruits that characteristically have several small seeds at its center encased in tough coat. The members of pome family fruits include apple, loquat, quince, medlar...etc.

Scientific name: Pyrus communis.

Pears are broadly classified based up on their place of origin as Asian-pears and European-pears. Asian varieties feature crispy texture and firm consistency that do not change even after harvesting or storage, making them fit for ready-to-eat. Whereas, European types generally become soft and juicy when allowed them to ripen.

In structure, pear fruit feature bell or “pyriform” shape; around 5-6 inches long, and weigh about 200 gm. Fresh fruit is firm in texture with mild ‘apple’ flavor. Externally, its skin is very thin; and depending upon the cultivar type, it can be green, red-orange or yellow-orange in color. Inside, it's off-white color flesh is soft and juicy. However, in case of completely ripe fruits, its flesh may turn to grainy texture with gritty sensation while cutting with a knife. The center of the fruit is more or less similar to apple in appearance with centrally located tiny inedible seeds.

Health benefits of pears

Pears fruit is packed with health benefiting nutrients such as dietary fiber, anti-oxidants, minerals and vitamins, which are necessary for optimum health. Total measured antioxidant strength (ORAC value) in pears is 2941 µmol TE/100 g.

  • Pears are a good source of dietary fiber. 100 g fruit provides 3.1 g or 8% of fiber per 100 g. Regular eating of this fruit may offer protection against colon cancer. Most of the fiber in them is non soluble polysaccharide (NSP), which functions as a good bulk laxative in the gut. Additionally, its gritty fiber content binds to cancer-causing toxins and chemicals in the colon, protecting its mucous membrane from contact with these compounds.

  • In addition, pear fruit is one of the very low calorie fruits; provides just 58 calories per 100g. A low calorie but high fiber diet may help bring significant reduction in body weight, and blood LDL cholesterol levels.

  • They contain good quantities of vitamin C. Fresh fruits provide about 7% of RDA per 100 g.

  • They are moderate sources of antioxidant flavonoids phyto-nutrients such as beta-carotene, lutein and zea-xanthin. These compounds, along with vitamin C and A, help the body protected from harmful free radicals.

  • The fruit is a good source of minerals such as copper, iron, potassium, manganese and magnesium as well as B-complex vitamins such as folates, riboflavin and pyridoxine (vitamin B-6).

  • Although not well documented, pears are among the least allergenic of all the fruits. For the same reason, they often recommended by health practitioners as a safe alternative in the preparation of food products in allergic persons.

  • Pears have been suggested in various traditional medicines in the treatment of colitis, chronic gallbladder disorders, arthritis, and gout.

Vol. 1 No. 2 2012 www.phytojournal.com

Pear (Pyrus communis L.) are among the most economically important fruit tree crops of the temperate zones[21]. It belongs to family Rosaceae. Its habitat is distributed in the temperate regions of Europe and West Asia. Folk name is Bagu-goshaa or Naakh. Its fruits are good source of pectin, help in maintaining desirable acid balance in the body.

Recommended to patients suffering from diabetes because of low sucrose content; and included in low antigen content diets to alleviate the

symptoms in the management of immunemediated disease. It contains phenolic compounds, related to diseases resistance[19].

Fresh pear juice exhibited good activity against Escherichia coli. An aqueous extract of the leaves was active against some strains of E. coli. The leaves contain arbutin, isoquercitrin, sorbitol, ursolic acid, astragalin and tannin. The bark contains friedelin, epifriedelanol and betasitosterol.

Phloridzin is present in the root bark[28]. The plant extract controls the development of freckles and blemishes on the skin and prevents melanin formation. It finds application in skin lightening.

Pears are divided into European pears, which combine a buttery juicy texture with rich flavour and aroma, and Asian pears, which are characterized by a crisptexture and sweet but subacid flavour. European pears are considered to cultivars of Pyrus communis, whereas Asi an cultivars are derived from Pyrus pyrifolia. More than 300 volatile compounds have been identified in pears, including hydrocarbons, aldehydes, alcohols, esters, ketones and sulfur compounds. Methyl to hexyl esters of decadienoate are the characterimpact compounds of the European pear. Other volatile esters e.g. hexyl acetate, 2-methylpropyl acetate, butyl acetate, butyl butanoate, pentyl acetate, and ethyl hexanoate also possess strong pear-like aromas. Ethyl octanoate and ethyl (E)-

Pyrus communis Linn. also known as Amritphale has astringent, sedative activity and act as febrifuge. Its leaves and bark can be used in

wound healing and thus also acts as antiinflammatory

Leaves, buds, and bark of the tree are domestic remedies among the Arabs on account of their astringent action[28]. Pear is a rich source of Vitamin C, ascorbic acid and it is an antioxidant. It acts against reactive Oxygen species[16,17]. Arbutin is commonly used in urinary therapeutics and as a human skin whitening agent. It decreases melanin in the skin.

In the past, the presence of arbutin in Pear has been correlated with biochemical processes that operate as defence mechanism against bacterial

invasion. Therefore acts as antibacterial too[16]

The flowers of common pear are used in folk medicine as components of analgesic and spasmolytic drugs[30].

Chemical Constituents

Arbutin (hydroquinone-β-D-glucopyranoside) is a natural phenolic glucoside found in various plant species of diverse families such as Rosaceae

(Pyrus communis Linn.)[16]. The leaves contain arbutin, isoquercitrin, sorbitol, ursolic acid, astragalin and tannin[21].

The bark contains friedelin, epifriedelanol and beta-sitosterol[14]. Phloridzin is present in the root bark[28].

Flavonoid glycosides have been isolated and identified: quercetin 3-O-β-D glucopyranoside, kaempferol 3-O-β-D (6”-O-α-Lrhamnopyranosyl)-glucopyranoside and quercetin 3-O-β-D-(6”-O-α-L-rhamnopyranosyl)- glucopyranoside. Sterols and triterpenes (β- sitosterol and α-amyrin), phenolics and coumarins are present in Pyrus communis Linn. Flowers. Chlorogenic acid is also isolated and identified from Pyrus communis Linn. flowers. The triterpenoids were isolated from the stem bark of Pyrus communis Linn[20].

Reference

1. Hedrick UP, Howe GH, Taylor OM, Francis EH, Turkey HB. The pears of New York. 29th Annual Report, New York Department of Agriculture. JB Lyon Co. Printers, Albany, New York, 1921.

2. Lombard PB, Westwood MN. Pear rootstocks. Rootstocks for Fruit Trees. Rom RC and Carlson RF (Ed). John Wiley & Sons, New York, 1987, 145

3. Layne REC, Quamme HA. Pears. Advances in Fruit Breeding. Janick J and Moore JN (Eds.). Purdue University Press, West Lafayette, Indiana, 1975, 38‐70.

4. Zohary D, Hopf M. Domestication of Plants in the Old World. Oxford University Press, Oxford, UK, 1988.

5. Bell RL, Quamme HA, Layne REC Skirvin RN. Pears. In: Janick, J and Moore, JN. (Eds.). Fruit Breeding, Vol. 1st: Tree and Tropical Fruits. John Wiley & Sons, New York, 1996, 441‐514.

6. Lee SH. A taxonomical survey of the oriental pears. Proceedings of the American Society for Horticultural Science 1948; 51:152‐156.

7. Rubtsov GA. Geographical distribution of the genus Pyrus: Trends and factors in its evaluation. American Nature 1944; 78:358‐366.

8. Teng Y, Tanabe K. Reconsideration on the origin of cultivated pears native to East Asia. Acta Horticulturae 2004; 634:175–182.

9. Bell RL. Pears (Pyrus). In: Moore, JN and Ballington, JR Jr. (Eds.). Genetic 216 Resources of Temperate Fruit and Nut Crops‐I. International Society for Horticultural Science, Wageningen, The Netherlands, 1990, 655‐ 697.

10. Watkins R. Cherry, plum, peach, apricot and almond. In: Simmonds, N.W. (Eds.). Evolution of Crop Plants. Longman, London, 1976, 242–247.

11. Vavilov NI. The Origin, Variation, Immunity and Breeding of Cultivated Plants. Ronald Press, New York, 1951.

12. Zagaja SW. Temperate zone fruits. In: Frankel, O.H. and Bennet, E. (Eds.). Genetic Resources in Plants: Their Exploration and Conservation. Blackwell Scientific Publications, Oxford, 1970, 327‐333.

13. Zagaja SW. Fruits of North East China. Fruit Science Report, 1977, 4:1‐8.

14. Rehder A. Manual of Cultivated Trees and Shrubs. Ed 2nd, Dioscorides Press, Portland, 1986, 401‐406.

15. Soni H. IJPI’s Journal of Pharmacognosy and Herbal Formulations 2001; 1:3.

16. Petkou D, Diamantidis G, Vasilakakis M. Plant Science. 2002; 162:115‐119.

17. Veltman RH, Kho RM, Schaik ACRV, Sanders MG, Oosterhaven J. Postharvest Biology and Technology. 2000; 19:129‐137.

18. Hamauzu Y, Forest F, Hiramatsu K, Sugimoto M. Food Chemistry 2007; 100:255‐263.

19. Challice JS, Wood MNW, Phytochemistry 1972; 11:37‐ 44.

20. Mehta BK, Verma M, Jafri M, Neogi R, Desiraju S. Nat Prod Res 2003; 6:459‐463.

21. Khare CP. Indian Medicinal Plants. 529.

22. Quality Control Methods for Medicinal Plant Materials. WHO, Geneva.

23. KhandelwalK R. Practical Pharmacognosy Techniques and Experiments. Ed 16th, Nirali Prakashan, Pune, 2006.

24. Duke JA. Handbook of Medicinal Herbs. Ed 2nd, CRCPress, 560‐561.

25. Berger RG (Ed.). Flavour and Fragrances; Chemistry, Bioprocessing and Sustainability, 146‐147.

26. Khandelwal. Brain and Turner 1975; WHO QCMMPM guidelines 1992, Harbone 1998. 2001.

27. Kokate CK, Purohit AP, GokhaleS B. Pharmacognosy. Ed 31st, Nirali Prakashan, 595‐597.

28. Nadkarni KM, Nadkarni AK. Indian Materia Medica. Ed 3rd, Popular Prakashan, Mumbai, 2005.

29. Sathisha AD, Lingaraju HB, Prasad KS. Evaluation of antioxidant activity of medicinal plant extractproduced for commercial purpose. E‐Journal ofChemistry 2011; 8(2):882‐886.

30. Rychlinska I, Gudej J. Institute of Technology andChemistry of Drugs, Poland, 2002, 59:53‐56.

31. Ramamoorthy KP, Bono A. Journal of EngineeringScience and Technology 2007; 2(1):70‐80.

32. Sun T, Powers JR, Tang J. Food Chemistry 2007;105:101‐106.

Fresh pear (Pyrus communis) consumption may improve blood pressure in middle-aged men and women with metabolic syndrome

Sarah A. Johnson1,2,3, Negin Navaei2, Shirin Pourafshar2, Neda S. Akhavan2, Marcus L. Elam2,4, Elizabeth Foley2, Elizabeth A. Clark2, Mark E. Payton5 and Bahram H. Arjmandi2,3

Metabolic syndrome (MetS) is a cluster of major cardiovascular risk factors including abdominal obesity, elevated blood pressure, atherogenic dyslipidemia and insulin resistance, and a pro-inflammatory and pro-thrombotic state, and is highly associated with the development of chronic diseases such as cardiovascular disease and type II diabetes. The primary treatment goals for individuals with MetS is to improve modifiable underlying risk factors such as body weight, physical activity, and diet through lifestyle changes. Pears (Pyrus communis) are a commonly consumed fruit and are an excellent source of soluble and insoluble dietary fiber, a good source of vitamin C and contains potassium and vitamin K, and bioactive compounds including flavonoids (e.g. anthocyanins and flavanols) and phenolic acids (e.g. gallic acid and chlorogenic acid). Although there is a paucity of clinical research that has investigated the impact of pear consumption on human health, previous research with pears supports their potential as a functional food for promoting overall health, especially with respect to the characteristics of MetS. One of the objectives of this randomized, placebo-controlled crossover clinical trial was to evaluate the antihypertensive effects of fresh pear consumption in middle-aged men and women with MetS. Fifty men and women aged 45 to 65 years with three of the five features of MetS were randomly assigned to receive either 2 medium-sized fresh pears (~178 g) or 50 g pear-flavored drink mix (placebo) per day for 12 weeks. Resting seated brachial systolic and diastolic blood pressures, heart rate, and pulse pressure were evaluated at baseline, 6 weeks, and 12 weeks. Preliminary analyses of 36 participants show that after 12 weeks of fresh pear consumption, systolic blood pressure (− 5 mmHg, P < 0.05) and pulse pressure (−5 mmHg, P < 0.01) were significantly lower than baseline levels whereas there were no changes in the control group. No changes were noted in diastolic blood pressure or heart rate for either group at any time point. The results of this study indicate that regular fresh pear consumption may improve blood pressure and vascular function in older men and women with MetS. Future research is needed to confirm the antihypertensive effects of fresh pears as well as to assess their impact on vascular function.

Support or Funding Information

Supported by the Pear Bureau Northwest and the Fresh Pear Committee of Federal Marketing Order 927.

Biosynthesis of Arbutin from Some Phenylpropanoid Compounds in Pyrus communis

HIGHER plants are capable of synthesizing aromatic compounds from shikimic acid, possibly through a pathway similar to that described by Davis et al. 1. Certain benzene rings, however, are formed from acetate in accordance with the hypothesis of Birch and Donovan2. Thus the B ring of quercitin is synthesized from shikimic acid3 whereas the A ring is an acetate-formed ring4.

  • Davis, B. D. , Symposium on Amino-Acid Metabolism, edit. by McElroy, W. D., and Glass, B. H., 799 (Johns Hopkins Press, Baltimore, Md., 1955).

  • Birch, A. J. , and Donovan, F. W. , Austral. J. Chem., 6, 360 (1953). | ISI | ChemPort |

  • Underhill, E. W. , Watkin, J. E. , and Neish, A. C. , Canad. J. Biochem. Physiol., 35, 219 (1957). | PubMed | ISI | ChemPort |

  • Watkin, J. E. , Underhill, E. W. , and Neish, A. C. , Canad. J. Biochem Physiol., 35, 229 (1957). | PubMed | ISI | ChemPort |

  • Friedrich, H. , Pharmazie, 13, 153 (1958). | PubMed | ChemPort |

  • Gloor, U. , and Wiss, O. , Experientia, 14, 410 (1958). | Article | PubMed | ISI | ChemPort |

Nature 188, 1130 - 1131 (24 December 1960); doi:10.1038/1881130b0SARA K. GRISDALE & G. H. N. TOWERS

Botany Department, McGill University, Montreal.

J Agric Food Chem. 2008 Oct 8;56(19):9094-101. doi: 10.1021/jf8013487. Epub 2008 Sep 9. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). Lin LZ1, Harnly JM.

A standardized profiling method based on liquid chromatography with diode array and electrospray ionization/mass spectrometric detection (LC-DAD-ESI/MS) was used to analyze the phenolic compounds in the skins of 16 pears (Pyrus spp.). Thirty-four flavonoids and 19 hydroxycinnamates were identified. The main phenolic compounds (based on peak area) in all of the pear skins were arbutin and chlorogenic acid. The remaining phenolics varied widely in area and allowed the pears to be divided into four groups. Group 1, composed of four Asian pears (Asian, Asian brown, Korean, and Korean Shinko), contained only trace quantities of the remaining phenolics. Yali pear (group 2) contained significant amounts of dicaffeoylquinic acids. Fragrant pear (group 3) contained significant quantities of quercetin glycosides and lesser quantities of isorhamnetin glycosides and the glycosides of luteolin, apigenin, and chrysoeriol. The remaining 10 pears (group 4) (Bartlett, Beurre, Bosc, Comice, D'Anjou, Forelle, Peckham, Red, Red D'Anjou, and Seckel) contained significant quantities of isorhamnetin glycosides and their malonates and lesser quantities of quercetin glycosides. Red D'Anjou, D'Anjou, and Seckel pears also contained cyanidin 3-O-glucoside. Thirty-two phenolic compounds are reported in pear skins for the first time.

Analyses of arbutin and chlorogenic acid, the major phenolic constituents in Oriental pear.

Cui T , Nakamura K , Ma L , Li JZ , Kayahara H College of Food Science and Technology of the Agricultural University of Hebei, Heber 071001, China. Journal of Agricultural and Food Chemistry [2005, 53(10):3882-3887]

The HPLC retention time, photodiode array UV spectrum analysis, and LC/MS results indicated that arbutin and chlorogenic acid are the main phenolic constituents in Oriental pear. The two compounds exist in different organs of the Yali pear, which is one of the major cultivars of Pyrus bretschnrideri. The contents of arbutin in the leaf bud, floral bud, flower, and young fruit were 11.9, 12.4, 8.29, and 9.92 mg/g fresh weight (FW), respectively. Chlorogenic acid amounts in the same organs were 2.26, 3.22, 5.32, and 3.72 mg/g FW, respectively. During development, the concentration of the two compounds in Yali pears was the greatest in young fruit (9.92 mg/g FW of arbutin and 3.72 mg/g FW of chlorogenic acid), and then declined swiftly with fruit growth to less than 0.400 and 0.226 mg/g FW, respectively, in mature fruit. Large differences existed in the distribution of the two compounds in parts of the mature fruit of 14 Oriental pear cultivars. The greatest concentration of arbutin was found in the peel (1.20 mg/g FW), which was 3-5 times greater than that found in the core and 10-45 times greater than the level in the pulp. The concentration of chlorogenic acid in the core was greater than that in the peel. The compounds in 17 cultivars of Oriental pear, including P. bretschnrideri, Pyrus pyrifolia, Pyrus ussuriensis, and Pyrus sinkiangensis, were compared with those in 5 cultivars of Occidental pear (Pyrus communis). The mean concentration of arbutin in the Oriental pear cultivars was 0.164 mg/g FW, greater than the 0.083 mg/g FW found in the Occidental pear cultivars. The greatest arbutin content was 0.400 mg/g FW, found in the Yali pear. However, the mean concentration of chlorogenic acid in the Oriental pear was 0.163 mg/g FW, less than that found in the Occidental pear (0.309 mg/g FW).

Les bienfaits de la poire

Cancer. Un apport substantiel d'antioxydants, particulièrement présents dans les fruits et légumes, dont la poire, peut réduire les risques de certains types de cancers1-2,11.

Maladies cardiovasculaires. La pelure des poires, ajoutée à une diète par ailleurs riche en cholestérol réduirait l’augmentation des lipides sanguins et augmenterait la concentration en antioxydants du sang5. Bien que ces résultats doivent être vérifiés chez l'humain, il semblerait que la consommation de la poire entière, plutôt que seulement la chair, procurerait un maximum d’antioxydants. Une autre étude a révélé que la consommation de fruits aurait des effets variables sur la capacité antioxydante et sur les lipides sanguins selon qu’on soit fumeur ou non-fumeur. En effet, la consommation quotidienne de fruits (une poire, une pomme et ¾ tasse (200 ml) de jus d’orange), augmente particulièrement la capacité antioxydante chez les non-fumeurs. Chez les fumeurs, les chercheurs ont surtout observé une diminution des lipides sanguins10.

Que contient la poire?

Antioxydants

La poire contient plusieurs composés phénoliques. Grâce à leur pouvoir antioxydant10, ces substances présentes dans les aliments d’origine végétale peuvent prévenir plusieurs maladies, dont certains types de cancers1-2,11 et de maladies cardiovasculaires1-3,12,13. Dans la poire, ces composés phénoliques, des flavonoïdes et des acides phénoliques, sont présents surtout dans la pelure, mais aussi en plus petite quantité dans la chair du fruit4.

Fibres alimentaires

La poire constitue une source élevée de fibres alimentaires, importantes pour la régularisation du transit intestinal et la prévention des maladies cardiovasculaires9. Environ deux tiers des fibres contenues dans la poire sont des fibres insolubles5. La pelure de la poire contient plus de fibres que sa pulpe.

Précautions

PoireLa poire contient du sorbitol et du fructose, des types de sucres qui peuvent occasionner des malaises gastro-intestinaux (gaz, ballonnements, douleurs abdominales, diarrhée) chez les personnes sensibles. Les individus souffrant du syndrome de l’intestin irritable14 sont particulièrement vulnérables. Chez l’adulte, ces malaises peuvent être ressentis à partir de 10 g de sorbitol par jour7 (correspondant à environ 2,5 poires moyennes). Une consommation quotidienne de 50 g ou plus de fructose peut également provoquer de la diarrhée (équivalent environ à 5 poires moyennes ou à 2 ½ tasses (625 ml) de nectar de poire).

Chez les enfants, la consommation de nectar de poire ainsi que de jus de pomme pourrait être une cause de diarrhées chroniques idiopathiques (d'origine inconnue)8. Il pourrait également y avoir un lien entre l’agitation des bébés et une intolérance au jus de poire. Si des symptômes gastro-intestinaux se manifestent, il est important de vérifier si ces boissons sont en cause.

Histoire

Les arbres du genre Pyrus sont originaires du Moyen-Orient et des zones subalpines du Cachemire. On trouve encore des espèces sauvages en Asie centrale et en Extrême-Orient. Leurs fruits sont petits et peu nombreux, si bien qu'ils ne sont cueillis que par les oiseaux.

On croit que les agriculteurs ont commencé à domestiquer le poirier il y a 7 000 ans, probablement en même temps que le pommier. On évoque un certain Chinois nommé Feng Li qui, 5 000 ans avant notre ère, aurait abandonné son poste de diplomate pour se consacrer à sa nouvelle passion, la greffe des pêchers, des amandiers, des plaqueminiers, des poiriers et des pommiers. Deux mille ans plus tard, la poire figure sur des tablettes d'argile sumériennes, aux côtés du thym et des figues.

Les Grecs l'auraient appréciée puisqu’Homère disait d'elle que c'était un cadeau des dieux. Mais c'est aux Romains que l'on doit sa véritable diffusion dans le reste de l'Europe. Ils l’auraient plusieurs fois croisée et auraient créé une cinquantaine de variétés. À l'heure actuelle, il y aurait dans le monde plus de 15 000 variétés, toutes dérivées de deux espèces : la poire dite asiatique (Pyrus sinensis) et la poire dite européenne (Pyrus communis).

En Chine, la fleur du poirier est le symbole du caractère éphémère de l'existence, car elle est très fragile. En Occident, dans l’univers onirique, la poire est un symbole érotique féminin. Les noms qu'on lui a donnés au fil des siècles en témoignent assez bien : Belle Lucrative, Comtesse d’Angoulème, Doyenne du Comice, Duchesse d’Orléans, Joséphine de Malines, Louise-bonne de Jersey, Marie-Louise, Madeleine, Winter Nelis...

1. Van't Veer P, Jansen MC, et al. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000 Mar;3(1):103-7.

2. Gerber M, Boutron-Ruault MC, et al. Food and cancer: state of the art about the protective effect of fruits and vegetables. Bull Cancer. 2002 Mar;89(3):293-312.

3. Bazzano LA, Serdula MK, Liu S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep. 2003 Nov;5(6):492-9.

4. Gorinstein S, Martin-Belloso O, et al. Comparative content of some phytochemicals in Spanish apples, peaches and pears. J Sci Food Agric. 2002;82:1166-1170.

5. Leontowicz M, Gorinstein S, et al. Apple and pear peel and pulp and their influence on plasma lipids and antioxidant potentials in rats fed cholesterol-containing diets. J Agric Food Chem. 2003 Sep 10;51(19):5780-5.

6. Carbonaro M, Mattera M, et al. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J Agric Food Chem. 2002;50:5458-5462.

7. Chagnon Decelles D, Daignault Gélinas M, et al. Diabète sucré. Manuel de nutrition clinique, 3e édition. Ordre professionnel des diététistes du Québec. Montréal: 2000.

8. Ament ME. Malabsorption of apple juice and pear nectar in infants and children: clinical implications. J Am Coll Nutr. 1996 Oct;15(5 Suppl):26S-29S.

9. Rimm EB, Ascherio A, et al. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA. 1996;275:447-451.

10. Alvarez-Parrilla E, De La Rosa LA, et al. Daily consumption of apple, pear and orange juice differently affects plasma lipids and antioxidant capacity of smoking and non-smoking adults. Int J Food Sci Nutr 2010;61:369-80.

11. Soerjomataram I, Oomen D, et al. Increased consumption of fruit and vegetables and future cancer incidence in selected European countries. Eur J Cancer 2010;46:2563-80.

12. Dauchet L, Amouyel P, Dallongeville J. Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 2009;6:599-608.

13. He FJ, Nowson CA, et al. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens 2007;21:717-28.

14. Moukarzel AA, Lesicka H, Ament ME. Irritable bowel syndrome and nonspecific diarrhea in infancy and childhood--relationship with juice carbohydrate malabsorption. Clin Pediatr (Phila) 2002;41:145-50.