Aronia melanocarpa

De zwarte appelbes Aronia melanocarpa is een struik tot 1 m hoog, met prachtig, glad en glanzend, weelderig donkergroen blad en schitterende herfstkleuren. Hij bloeit wit in mei-juni, waarna de glanzende zwartpaarse bessen verschijnen.

De naam Aronia hangt samen met het Griekse woord aria dat de soortnaam is voor Sorbus aria, de meelbes. Aronia is ook een tijdlang de geslachtsnaam geweest van de peer die nu Pyrus heet.Aronia of appelbes is nu een geslacht met drie soorten bladverliezende heesters uit oostelijk Noord-Amerika. Ze hebben bijna elliptisch blad en bloemen met vijf kroonblaadjes in kleine (bij)schermen. Ze worden gekweekt om hun bloemen, vruchten en het schitterende herfstblad. Dat kleurt in het najaar vlammend rood en oranje. De bessen kunnen rood of zwart paars zijn. De hoogten variëren, afhankelijk van de soort, van 1-3 meter.

Algemeen onderhoud

Aronia's groeien graag in zure of neutrale (pH 7) grond die humusrijk, goed vochtvasthoudend en voedselrijk moet zijn. De planten doen het goed in zowel zon als lichte schaduw. Geef in het voorjaar kalkvrije mest (het beste is rododendronmest of andere mest voor zure-grondplanten). Snoei is bijna niet nodig. De planten zijn volledig winterhard. Mulch boven de wortels is aan te bevelen. Dat maakt de grond humusrijker.

Aroniabeere

Aronia melanocarpa „Nero“

[Schwarze Apfelbeere, Schwarze Eberesche, Kahle Apfelbeere, Aroniabeere] Robuster und schädlingstoleranter Fruchtstrauch. Pflegeleicht. Die schwarzen Beeren enthalten viel gesundheitsfördernde, antioxidativ wirkende Anthocyane und Phenole. Sie können roh oder in Milchmixgetränken, Limonade, und wegen des hohen Pektingehaltes als Alternative zu Preiselbeerkompott oder als Marmelade verarbeitet werden. Die Sorte „Nero“ ist eine besonders großfrüchtige, reichtragende und sehr frostharte russische Züchtung. In der ehemaligen Sowjetrepublik wurde die Aroniabeere als Heilmittel genutzt bei Lebererkrankungen, Magenentzündungen, Bluthochdruck und Allergien. Ein wertvolles, herbsüßes Obstgehölz. Die Beeren reifen im September bis Oktober.

Wichtig ist, die Beeren so spät wie möglich zu ernten, dann schmecken sie einfach noch besser, vor allem wenn sie roh gegessen werden. Aroniabeeren lassen sich auch wie Rosinen trocknen, und sind z.B. bei langen Autofahrten eine willkommene Energienahrung. Unsere Sträucher können bereits im Folgejahr reichlich Früchte tragen und das jahrelang.

Eine Aronia haben wir an einen ziemlich schattigen Platz gepflanzt. Nach nur 2 Jahren hatten wir trotzdem hatten wir eine erstaunlich reiche

Beerenernte!

Monograph: Aronia melanocarpa / Black chokeberry.

HISTORY AND CULTURAL SIGNIFICANCE

Black chokeberry is one of 16 species in the genus Aronia in the rose family distributed in North America and Eastern Asia. In 1803, the French botanist André Michaux had initially described this species as Mespilus arbutifolia var. melanocarpa.5

Historically, black chokeberry was used by the North American Forest Potawatomi tribe.2 They called the fruits nîki’mînûn or sakwako’mînûnand used them to make a tea for the treatment of colds.2,6 Both the Potawatomi and Abnaki tribes used the fruit for food.7 The berries were used in the preparation of pemmican, a nutritious and long-lasting foodstuff prepared from animal fat, dried powdered meat, and sometimes fruit.2 According to an ethnobotanical account from 1933, the Forest Potawatomi reported that “they eat the berries from this plant but they are entirely too bitter to suit the white man.”6 Among North American settlers, both the berries and the bark were used as an astringent.2

Black chokeberry is one of the most frequently cultivated Aronia species, in addition to red chokeberry (A. arbutifolia; also a native of North America), the tetraploid large-fruited black chokeberry (A. x mitschurinii; developed in Russia), the interspecific hybrid purple chokeberry (A. xprunifolia), and the intergenus hybrids of black chokeberry with whitebeam (Sorbus aria, Rosaceae) = x Sorbaronia dippelii and with American mountain ash (S. americana) = x Sorbaronia sorbifolia.5

Commercial cultivation of black chokeberry is a relatively recent development.5 Although the plant is a North American species, Ivan Mitschurin began breeding experiments in Russia in 1910 with the goal of developing a sweet-tasting rowan berry by crossing black chokeberry with Sorbus or Mespilus species. His work resulted in two cultivars, ‘Likernaja’ and ‘Desertnaja Michurina.’ In 1982, Mitschurin’s varieties were named as a new hybrid species A. x mitschurinii.5

After World War II, black chokeberry cultivation expanded in Europe and Russia.5 Starting in 1946, large-scale black chokeberry cultivation was steadily introduced into republics of the former Soviet Union, mainly Belarus, Moldova, Russia (Siberian Federal District) and Ukraine. Black chokeberry was first introduced to Japan in 1976 from the former Soviet Union.2 By the 1980s, it was introduced for cultivation in former Soviet Bloc countries including Bulgaria, Czechoslovakia, East Germany, Poland, and Slovenia as well as in Scandinavian countries, including Denmark and Finland. Poland has become the main supplier of chokeberry to Germany, although there has been black chokeberry cultivation in Saxony (of former East Germany) since 1976.5

In Russia, where it has been documented as a functional food since the 1940s, and in Eastern European countries, black chokeberry has been used for both high blood pressure and cholesterol.2,8 Historically, it has been used topically as a remedy for hemorrhoids.2 Additionally, it has been utilized to maintain a healthy urinary tract, fight bacteria and viruses, strengthen memory, aid digestion, and to treat diabetes and arthritis.8 In 1996, Jan Mills, president and CEO of Artemis International Inc. (Fort Wayne, IN), obtained the main commercial cultivars from Polish agricultural schools and brought them back to the United States, where they were placed in various research stations for the purpose of optimizing techniques for commercial production towards the establishment of a viable new economic crop for American orchardists.

In addition to its use in the canning industry for the manufacture of compotes, confitures, fruit jellies, and marmalades; chokeberry juice is used in the food and beverage industry as an additive to augment coloration of other fruit juices and to adjust or enhance flavor (e.g., as a component of fruit-juice cocktails in combination with apple [Malus pumila, Rosaceae], black currant [Ribes nigrum, Grossulariaceae], European gooseberry [Ribes uva-crispa, Grossulariaceae], pear [Pyrus communis, Rosaceae], and/or garden rhubarb [Rheum rhabarbarum, Polygonaceae]).5 The fresh-pressed juice is a valuable raw material for the manufacture of alcoholic sparkling wines, dessert wines, and liqueurs. In Europe, there are non-alcoholic, functional, ready-to-drink beverages like green tea (Camellia sinensis, Theaceae) with black chokeberry, raspberry (Rubus idaeus, Rosaceae) and stinging nettle (Urtica dioica, Urticaceae) leaf juice, as well as innovative, soft spirituous liquors such as Vodka-Aronia. In the dairy processing industry, there are black chokeberry yogurts, cream desserts, and ice creams and sorbets, which are especially popular due to color intensity and unusual taste characteristics. In the confectionary and baking industries, the fruit purée, juice, or powdered fruit forms are used in the production of praline fillings, cake fillings, fruit bars, cereals (dried fruit and candied fruit), and gummy bears. The pomace (the solid remains of the fruit after the juice has been pressed) is suitable for the extraction of dyestuff (dyestuff content: four to 10 g/kg) and extracts of the pomace are used as food color pigment components of foods and pharmaceutical products. The pomace extracts can contain about 5.8% anthocyanins, 6.8 ± 0.95% organic acids (pH value: 3.5), and 0.3% catechins and leuco-anthocyanins.5

The chokeberry bush is used ornamentally in the United States.9 In England, black chokeberry received the Royal Horticultural Society’s Award of Merit in 1972, primarily because it has three seasons of interest (white flowers in the spring, green foliage in the summer, and fruits in the late summer and autumn).9

CURRENT AUTHORIZED USES IN COSMETICS, FOODS, AND MEDICINES

A primary use of black chokeberry juice is reportedly as an extender to other juices (Bush M, personal communication to A. Lindstrom, January 22, 2014). The fresh frozen fruit is used for bakery and smoothie applications while the concentrate/powder/extract is applied as a nutraceutical component of functional beverages and dietary supplement products. The United States Department of Agriculture (USDA) permits the use of nonorganically-produced chokeberry (aronia) juice color pigment as an exempted ingredient in processed products that are labeled as certified organic, but only when organic chokeberry juice color pigment is not commercially available.10 Additionally, while color additives for use in food generally require approval and certification by the Food and Drug Administration (FDA), fruit juice including black chokeberry juice is classified as a color additive that is exempt from certification.11

In the food ingredients fraud database of the Food Chemicals Codex, sorbitol-containing fruit juices such as aronia juice, as well as anthocyanins obtained from aronia, are listed as known adulterants of pomegranate (Punica granatum, Lythraceae) fruit juice.12

For the purpose of establishing pesticide tolerance limits, “Aronia berry” (Aronia spp.) is listed as a commodity in the Environmental Protection Agency (EPA) crop subgroup 13-07B (bushberry subgroup) of EPA crop group 13-07 (berry and small fruit crop group). EPA permits the application of, and therefore residues of, nine specific pesticide chemicals on black chokeberry: bifenthrin (residues up to 1.8 ppm [parts per million]), carbaryl (3.0 ppm), clopyralid (0.50 ppm), endothall (0.6 ppm), fluazinam (7.0 ppm), halosulfuron-methyl (0.05 ppm), methoxyfenozide (3.0 ppm), metolachlor (0.15 ppm), and novaluron (7.0 ppm).13

In Canada, black chokeberry (dried or fresh) is classified as a medicinal ingredient of licensed natural health products (NHPs) requiring pre-marketing authorization from the Natural Health Products Directorate (NHPD) and manufacture in compliance with NHP good manufacturing practices (GMPs). Several black chokeberry ingredients also are permitted for use as non-medicinal components of licensed NHPs for specific purposes (when used at non-therapeutic levels). For example, black chokeberry fruit extract (dry or liquid) and chokeberry flavor both are permitted for use as non-medicinal flavor enhancer ingredients of oral (e.g., juices and tablets) and topical (e.g., skin or lip balms) NHPs, while “Aronia melanocarpa fruit juice” is permitted for use as a non-medicinal skin-conditioning agent of topical NHPs.14

At the time of this writing there were four licensed NHPs containing black chokeberry as a medicinal ingredient. One of the four, a monopreparation containing 100 mg of dried extract per capsule, carries the NHPD-authorized use as a source of antioxidants. There were 18 licensed NHPs containing non-medicinal black chokeberry ingredients (extract or juice) and another 13 containing chokeberry flavor.15

In the European Union, there are registered Traditional Herbal Medicinal Products (THMPs) that contain black chokeberry concentrated juice as a component. As an example, PhytoPharm Klęka SA (Klęka, Poland) is the marketing authorization holder for a THMP called Bioaron C®syrup, which contains, per five ml dose, 1,920 mg extract of Aloe arborescens (Xanthorrhoeaceae) and 51 mg ascorbic acid (vitamin C) as the active ingredients with 1,170 mg of Aroniae succus (concentrated black chokeberry juice) listed as an excipient ingredient. Although it is authorized for marketing based on traditional use only, Bioaron C® has been the subject of clinical studies and was marketed as a food supplement product in some EU member states prior to implementation of the EU Directive on Traditional Herbal Medicinal Products in 2004.16,17

In 2011, the Panel on Dietetic Products, Nutrition and Allergies of the European Food Safety Authority (EFSA) provided a scientific opinion on a list of proposed health claims in relation to claimed effects of anthocyanidins and proanthocyanidins as food constituents occurring in black chokeberry and other fruits. The Panel concluded that a cause-and-effect relationship could not be established between the consumption of anthocyanidins and proanthocyanidins and claimed effects on “blood fat levels,” “carbohydrate metabolism and insulin sensitivity,” “gut health,” the “cardiovascular system,” and “eyes.”18

The EFSA Panel also evaluated the vascular health claim “maintenance of blood vessel wall strength” proposed for black chokeberry fruit food supplement products that contain an anthocyanin equivalent of nine to 15 g of fresh fruits per day (or 45 to 60 mg anthocyanins calculated as cyanidin-3-0-galactoside per day). The Panel concluded that the claimed vascular and vein health effects were not sufficiently defined, and therefore it was unclear how the suggested health outcomes could be assessed.19

There are presently two black chokeberry ingredients authorized for use in cosmetic products by European Commission Health and Consumers Directorate. Both the expressed juice and extract of the fruit are ingredients listed for skin-conditioning functions.20

MODERN RESEARCH

Black chokeberries have a higher content of phenolic constituents than most other black berries, including anthocyanins, proanthocyanidins, and phenolic acids.8 These constituents are thought to be responsible for positive outcomes in the few pilot studies that have been conducted on chokeberries. One in vitro trial on porcine coronary artery rings compared chokeberry, bilberry (Vaccinium myrtillus, Ericaceae), and elderberry (Sambucus nigra, Adoxaceae) to examine their potential vasoactive and vasoprotective properties in coronary arteries. The anthocyanin-rich extract from chokeberry (Artemis International, Ft. Wayne, IN) and bilberry (Artemis International), but not elderberry, “produced dose-dependent relaxation of coronary arteries, with the chokeberry extracts exhibiting the highest potency.”21

A small, uncontrolled clinical study in 2013 recruited 11 healthy Japanese women with high peripheral cold (thermal) constitution who were given three tablets daily containing 50 mg A. melanocarpa (ethanol/water extraction from frozen fruit under low temperature with nitrogen protection; anthocyanin content equivalent to 35% w/w, no further information provided).22 The subjects were instructed to take all three tablets daily with water after breakfast for four weeks. At the end of the study, the subjects’ body-surface temperature after 20 minutes of acclimatization in an air-conditioned room was significantly higher than at the beginning of the study. Psychological tests showed that factors related to cold were improved significantly and plasma noradrenaline concentration was elevated significantly (which would elevate thermogenesis) by black chokeberry intake. However, peripheral blood flow was not affected. The authors conclude that A. melanocarpasupplementation improves body temperature maintenance in healthy women with cold constitution, but that further research in placebo-controlled studies is needed to further investigate these findings.

In a 2012 clinical study, 25 patients with unmedicated hypercholesterolemia (high blood cholesterol) took 100 mg aronia extract (Aronox®; Agropharm; Tuszyn, Poland; approximately 25% anthocyanins [cyanidin glycosides], 9% phenolic acids [chlorogenic and neochlorogenic acids], and 50% monomeric [epicatechin] and oligomeric procyanidins) two times per day for two months.23 Blood samples were collected from the test group and a control group of 20 healthy individuals at the beginning of the study and at one and two months. Cholesterol decreased in the aronia group by 22% and lipid peroxidation decreased by 40%. No significant changes in other measured blood parameters occurred (thiol groups levels, total ATPase activity, or Na+/K+ ATPase activity).

Another study in 2012 investigated the effect of short-term supplementation with black chokeberry extract on blood clot formation, platelet aggregation (which leads to clot formation), and fibrinolysis (a process that prevents the growth of blood clots) in patients with metabolic syndrome (MetS).24 MetS patients (n=38) and 14 healthy volunteers were enlisted. MetS patients were given 100 mg A. melanocarpa extract (AM; 60 mg total polyphenols, including a minimum of 20 mg anthocyanins; most likely Aronox [brand name not given]) three times per day for two months. The control group received nothing. All participants started a low-fat diet three months prior to taking the chokeberry extract, were instructed not to modify their usual food intake or exercise, and were prohibited from ingesting black chokeberry products. At one and two month markers, body mass index and waist circumference were measured, urine analysis was performed, and blood was drawn prior to supplementation. Compliance was confirmed by tablet counts at one and two months. Blood was analyzed for total and differential blood cell count, blood sedimentation rate, alanine and aspartate aminotransferases, electrolytes, bilirubin, creatinine, and total proteins. Additional blood assays were performed for total serum cholesterol (TC), triglycerides (TG), HDL and LDL cholesterol (HDLc and LDLc), and fibrinogen levels. After one and two months of chokeberry supplementation, the AM group showed significant decreases in TC, LDLc, and TG; no changes in HDLc, BMI, or waist circumference occurred in the AM group. After one month of supplementation, the AM group experienced a statistically significant change in inhibition of platelet aggregation. However, these values returned to the pre-study levels after two months of supplementation. Potential for clot formation and fibrinolysis decreased significantly in the AM group after one month of supplementation, and the maximum of coagulation and fibrinolysis and lengths of these processes also were reduced. The authors point out that the study had some limitations, specifically the small number of subjects and the lack of a placebo group.

A 2010 study examined the effect of black chokeberries on blood pressure (BP), serum concentrations of lipids (TC, LDLc, HDLc, TG), endothelin-1 (ET-1), inflammatory mediators (C-reactive protein and fibrinogen), fasting glucose, and uric acid in patients with MetS.25 One group of participants included 25 MetS patients who had not responded to a three-month lifestyle modification. The second group included 22 healthy volunteers matched for age and gender. The treatment group was administered 100 mg aronia extract (Aronox [64.5% 3-O-cyanidin-galactoside, 28.9% 3-O-cyanidin-arabinoside, 4.2% 3-O-cyanidin-xyloside, and 2.4% 3-O-cyanidin-glucoside]) three times daily over a two-month period. Clinical examinations, measurements of weight, waist circumference, BP, urine examinations, 12-ECG, and blood sampling were performed before treatment began and after one and two months. Two months of aronia extract supplementation resulted in significant decreases in systolic and diastolic BP as well as in concentrations of TC, LDLc, TG, and ET-1, suggesting that aronia supplementation may benefit MetS patients with regard to atherosclerosis prevention.

One randomized, placebo-controlled human clinical study in 2005 found that rowers who supplemented their diets with chokeberry juice experienced less exercise-induced oxidative damage to red blood cells.26 Members of the Polish rowing team (19 males) comprised the study population. The treatment group (n=9) received 50 mL of chokeberry juice (23 mg/mL anthocyanin content, Europlant PhytoPharm Klęcka SA; Klęcka, Poland) three times daily for four weeks. The placebo group (n=10) received 50 mL juice three times daily that was identical in taste and appearance to the chokeberry juice. At the end of four weeks of supplementation, the rowers performed an incremental rowing ergometer exercise as a control. The following day they performed another incremental rowing exercise at which time blood samples were taken prior to starting, one minute after completion, and after a 24-hour recovery period. Concentrations of thiobarbituric acid reactive substances (TBARS) were assessed as a measure of red blood cell oxidative damage. TBARS concentrations were significantly lower in the chokeberry group than in the placebo group. The chokeberry group also experienced lower creatine kinase activity after the rowing exercise, suggesting a reduction in muscle damage associated with hard exercise.

One systematic review, published in 2010, evaluated 13 clinical trials performed between 2000 and 2009 — two of them covered in this article — and concluded that current evidence, while “poor by conventional standards,” is promising.8 The authors suggest that the results of the studies addressed in their review could provide a basis for the planning of a new generation of studies.

FUTURE OUTLOOK

Although there is a movement to reintroduce and popularize this native American species in North America, European countries are still the primary producers of black chokeberry ingredients and products.27 US production is but a fraction of total world output, albeit an increasing one. Jonathan D. Smith, PhD, president of Simply Incredible Foods (Port Edwards, WI), reported in 2013 that he identified 279 stock keeping units currently manufactured with Aronia ingredients in 33 countries in 39 different food categories, and in seven forms (concentrate, fresh juice, powder, puree, whole berry, extract, and pomace). The countries that produce the most products are Poland (101), Germany (24), the United States (24), Russia (19), Japan (12), and Canada (10). The most popular types of products containing chokeberry are teas, yogurts, nectars, juices, fruit drinks, jellies and chews, beverage concentrates, and medicated confectionaries.

Poland accounts for about 90 percent of world production.28 Black chokeberry production in Poland was 36,800 metric tons in 2009 and has increased steadily to an estimated 2013 production total of 50,000 metric tons. The larger 2013 crop, however, depressed the chokeberry market, causing some producers not to harvest due to the oversupply. Area under cultivation in Poland has increased from 5,200 hectares in 2009 to an estimated 6,000 hectares in 2013. Plantation acreage has remained fairly constant since 2010, mostly due to volatility in procurement prices. The Polish chokeberry sector is defined by the absence of a central producer organization and by heavy producer dependence on a just a few large processing companies as the main buyers.

In Germany, an average of 200 metric tons of black chokeberry is produced each year in the state of Saxony alone.5 Since 2009, cultivation also has been introduced to farmers in the state of Lower Saxony.

In the United States, demand for chokeberry ingredients with sustainable agriculture certification appears to be increasing based on the relatively high number of certified organic producers in the country.29 The USDA National Organic Program (NOP) database of certified organic producers shows 40 certified producers of aronia berry or chokeberry: 20 in Iowa, five in Washington, four in Wisconsin, four in Nebraska, and one each in Illinois, Kansas, Minnesota, Oregon, New York, and Vermont. There is one foreign organic producer situated in Bulgaria listed in the USDA database.

Possibly related to the number of certified organic black chokeberry producers in the United States are the newly established growers associations and some university agricultural research programs promoting black chokeberry plantations as a new economic crop source.30The nonprofit Midwest Aronia Association was established in 2008 in Iowa with support from Iowa State University Extension and Outreach personnel, which provided the means to connect farmers interested in growing aronia. The association, with members in 12 states and one Canadian province, collectively represents about 200,000 aronia plantings.

More recently, the Mid-Atlantic Aronia Growers Association — a trade organization — was formed to further the interests of aronia growers in the Mid-Atlantic region. It also supports activities of a newly established National Aronia Council.31

A 2013 market potential study project of the Maine Agricultural Center proposed that black chokeberry offers good potential to enhance Maine’s economy, and it provided some indicative price information: “A mature aronia plant can yield 15-30 pounds of fruit. One pound of fresh frozen berries presently retails for $10 from internet suppliers. Other aronia products being marketed on internet sites include: dried fruit $8/8 oz; jelly $6/8 oz; juice concentrate $30/16 oz; and wine $14-21/bottle.”32

It is clear that small farmers in several states are participating in the development of a new American black chokeberry industry. If the products can be popularized in the United States as successfully as they have been elsewhere — particularly in Germany, Poland, and Russia — there may be a good chance for American farmers to reclaim this native plant and boost the local economies of rural farming communities. At the same time, agricultural programs in several countries are assessing the option of introducing and/or scaling up existing aronia plantations based on current market analysis showing that demand is increasing. The emerging domestic black chokeberry industry should address the growing demand for healthy foods grown in America and proponents of the local food movement.

—Gayle Engels and Josef Brinckmann

REFERENCES

1. Kulling SE, Rawel HM. Chokeberry (Aronia melanocarpa) – a review on the characteristic components and potential health effects. Planta Med. 2008;74:1625-1634.

2. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food. 2010;13:255-269.

3. Knudson M. Plant guide for black chokeberry (Photinia melanocarpa (Michx.) K.R. Robertson & Phipps). United States Department of Agriculture, Natural Resources Conservation Service. Bismarck Plant Materials Center: Bismarck, ND; 2009. Available at: http://plants.usda.gov/plantguide/pdf/pg_arme6.pdf. Accessed December 9, 2013.

4. Brand M. Aronia: Native shrubs with untapped potential. Arnoldia. 2010;67(3):14-25.

5. Walther E, Müller S. Aronia, Apfelbeere (Aronia melanocarpa [Michx.] Elliott). In: Hoppe B (ed.). Handbuch des Arznei- und Gewürzpflanzenbaus, Band 4. Bernberg, Germany: Verein für Arznei- und Gewürzpflanzen SALUPALNTA e.v. Bernberg. 2012;95-110.

6. Smith HH. Ethnobotany of the Forest Potawatomi Indians. Bulletin of the Public Museum of the City of Milwaukee. 1933;7(1).75,108.

7. Moerman DE. Native American Ethnobotany. Portland, OR: Timber Press; 1998.

8. Chrubasik C, Li G, Chrubasik S. The clinical effectiveness of chokeberry: a systematic review. Phytother Res. 2010;24:1107-1114.

9. Stack LB. Aronia (black chokeberry). University of Maine Cooperative Extension Website. 2013. Available at: http://umaine.edu/agriculture/home/aronia/. Accessed December 23, 2013.

10. United States Department of Agriculture (USDA). § 205.606 Nonorganically produced agricultural products allowed as ingredients in or on processed products labeled as “organic”. In: Code of Federal Regulations, Title 7 (7CFR). Washington, DC: National Archives and Records Administration. 2013.

11. Food and Drug Administration (FDA). 21 CFR §73.250 Fruit juice, Part 73 Listing of color additives exempt from certification. In: Code of Federal Regulations, Title 21 (21CFR). Washington, DC: National Archives and Records Administration. 2013.

12. United States Pharmacopeial Convention. General Information: Food Ingredients Fraud Database. In: Food Chemicals Codex, 8th Edition. Rockville, MD: United States Pharmacopeial Convention. 2013;1530-1612.

13. Environmental Protection Agency (EPA). Pesticide Programs (Parts 150 – 180). In: Code of Federal Regulations, Title 40 (40CFR). Washington, DC: National Archives and Records Administration. 2013.

14. Natural Health Products Directorate (NHPD). Natural Health Products Ingredients Database (NHPID). Ottawa, ON: Health Canada. Available at: http://webprod.hc-sc.gc.ca/nhpid-bdipsn/search-rechercheReq.do. Accessed: December 10, 2013.

15. Natural Health Products Directorate (NHPD). Licensed Natural Health Products Database (LNHPD). Ottawa, ON: Health Canada. Available at: http://webprod5.hc-sc.gc.ca/lnhpd-bdpsnh/index-eng.jsp. Accessed December 10, 2013.

16. Phytopharm Klęka SA. Bioaron C®. Available at: http://bioaron.pl/. Accessed December 11, 2013.

17. European Union. Appendix A referred to in Chapter 1 of Annex IX: List of pharmaceuticals subject to transitional period under Chapter 1.Official Journal of the European Union. September 23, 2003, C 227 E, Volume 46. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2003:227E:FULL:EN:PDF. Accessed December 11, 2013.

18. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to: anthocyanidins and proanthocyanidins (ID 1787, 1788, 1789, 1790, 1791) pursuant to Article 13(1) of Regulation (EC) No 1924/2006.EFSA Journal. 2011;9(4):2083. Available at: www.efsa.europa.eu/en/search/doc/2083.pdf. Accessed December 11, 2013.

19. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and health relationships that are not sufficiently defined pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal. 2011;9(6):2228. Available at: www.efsa.europa.eu/en/search/doc/2228.pdf. Accessed December 11, 2013.

20. European Commission Health & Consumers Directorate. Cosmetic Ingredients and Substances (CosIng®) Database. Brussels, Belgium: European Commission. Available at: http://ec.europa.eu/consumers/cosmetics/cosing/. Accessed December 11, 2013.

21. Bell DR, Gochenaur K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol. 2006;100:1164-1170.

22. Sonoda K, Aoi W, Iwata T, Li Y. Anthocyanin-rich Aronia melanocarpa extract improves body temperature maintenance in healthy women with cold constitution. SpringerPlus. November 21, 2013;2:626. Doi: 10.1186/2193-1801-626. Available at: www.ncbi.nlm.nih.gov/pmc/articles/PMC3843504/pdf/40064_2013_Article_664.pdf. Accessed January 1, 2014.

23. Duchnowicz P, Nowicka A, Koter-Michalak M, Broncel M. In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia. Med Sci Monit. 2012;18(9):CR569-574.

24. Sikora J, Broncel M, Markowicz M, Chalubinski M, Wojdan K, Mikiciuk-Olasik E. Short-term supplementation with Aronia melanocarpaextract improves platelet aggregation, clotting, and fibrinolysis in patients with metabolic syndrome. Eur J Nutr. 2012; 51:549-556.

25. Broncel M, Koziróg M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med Sci Monit.2010;16(1);CR28-34.

26. Pilacyzynska-Szczesniak L. Skarpanska-Steinborn A, Deskur E, Basta P, Horoszkiewicz-Hassan M. The influence of chokeberry juice supplementation on the reduction of oxidative stress resulting from an incremental rowing ergometer exercise. Int J Sport Nutr Exerc Metab. 2005;14:48-58.

27. Smith JD. 2013 Midwest Aronia Association Presentation. Available at: http://midwestaronia.org/wp-content/uploads/2013/04/Jonathan-D-Smith-aronia-presentation-2013-final.pdf. Accessed December 12, 2013.

28. Kobuszynska M. Poland Pursues Becoming the Berry Supplier for Russia and the EU. Warsaw, Poland: United States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) Global Agricultural Information Network (GAIN). November 27, 2013. GAIN Report Number PL 1336.

29. United States Department of Agriculture (USDA). 2012 List of certified USDA organic operations. Washington, DC: USDA. 2013. Available at: http://apps.ams.usda.gov/nop/. Accessed December 11, 2013.

30. Midwest Aronia Association website. Available at: http://midwestaronia.org/. Accessed December 12, 2013.

31. Mid-Atlantic Aronia Growers Association. Maine Gardener: It’s no blueberry, but Aronia has endearing, if sour, charms. Mid-Atlantic Aronia Growers Association website. Available at: http://midatlanticaronia.wordpress.com/. Accessed December 12, 2013.

32. Myracle A, Stack L, Handley D. Project No. MAC 135: Exploring the Market Potential of Aronia Berries. Orono, ME: Maine Agricultural Center. Available at: http://umaine.edu/maineagcenter/files/2013/06/MAC-135-proposal-2013.pdf. Accessed December 12, 2013.

Review of Black Chokeberry—Bioactivities of Phenolic-rich Fruit May Contribute to Prevention of Chronic Diseases

Jurikova T, Mlcek J, Skrovankova S, et al. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules. June 7, 2017;22(6):944. doi: 10.3390/molecules22060944.

Bioactive plant-derived compounds, especially phenolics with high antioxidant activity, are increasingly shown to be beneficial in preventing and treating chronic diseases. Black chokeberry (Aronia melanocarpa, Rosaceae) fruit has high levels of antioxidants, especially anthocyanins in the form of cyanidin derivatives. Black chokeberry fruit also contains other beneficial compounds such as vitamins C and E, carotenoids, pectins, and organic acids, as well as essential minerals (potassium, calcium, and magnesium).

Black chokeberry is native to eastern North America, from the Great Lakes to New England and higher altitudes of the Appalachians. Its fruits were used by Native Americans to treat colds. Introduced to Russia in the early 1900s, black chokeberry soon spread throughout the country, and in the early 20th century was introduced to other European nations, especially in Eastern Europe and Scandinavia. Several cultivars with larger and sweeter fruit have been developed in Northern and Eastern Europe, of which two, "Viking" and "Nero," are available in the United States. A high tannin level and astringent taste limit black chokeberry's popularity as a fresh fruit. It is widely used as a food colorant and flavoring; in teas (infusions), juices, jams, purees, etc.; and as a source of compounds for nutritional supplements. Its pomace is rich in bioactives.

The authors summarize black chokeberry fruit's composition and the bioavailability, antioxidant properties, and health-promoting benefits of its compounds in relation to chronic diseases. They do not describe search methods for the information presented.

Polyphenols are the major bioactive compounds of black chokeberry. These dietary antioxidants can scavenge free radicals, a cause of oxidative stress, which causes chronic inflammation and thereby increases the risk of diseases including atherosclerosis, cancer, and neurodegenerative conditions. Black chokeberry fruit's total phenolic (TP) content is in the range of 690-2560 mg gallic acid equivalents (GAE) per 100 g fresh weight. This is higher than for many better-known berry crops, including blueberry (Vaccinium spp., Ericaceae), red raspberry (Rubus idaeus, Rosaceae), red currant (Ribes rubrum, Grossulariaceae), strawberry (Fragaria × ananassa, Rosaceae), "blackberry" (Rubus fruticosus; also a generic common name for an edible fruit produced by many Rubus spp.), and cranberry (V. macrocarpon), and comparable to the TP content of bilberry (V. myrtillus) and hawthorn (Crataegus monogyna, Rosaceae) fruit. As in other phenolic-producing plants, black chokeberry's TP content and levels of specific phenolic compounds vary with cultivar and genotype, growth conditions, maturity at harvest, extraction and/or processing methods, and storage. The highest levels of phenolic compounds are found in the "Hugist" cultivar; the lowest, in "Aron." Average concentration of phenolics in pomace is about five times that in black chokeberry juice. The most important phenolic compounds in black chokeberry fruits are phenolic acids, especially hydroxycinnamic acids, and flavonoids, including flavanols (epicatechin), flavonols (mainly quercetin glycosides), anthocyanins, and proanthocyanidins. While intestinal absorption of black chokeberry polyphenols is very poor, metabolization into other compounds allows for their beneficial effects. Quantities and proportions of individual phenolics vary among cultivars and plant parts, and are affected by extraction/processing and storage methods. The relative antioxidant activities of different extracts and products are detailed. Compared with black chokeberry cultivars "Viking" and "Aron," purple chokeberry (Aronia × prunifolia) dried berries had higher antioxidant activity. It is noted that black chokeberry's lipophilic antioxidant capacity is quite low. Its hydrophilic antioxidant capacity, along with black currant (Ribes nigrum) and elderberry (Sambucus spp., Adoxaceae), is among the highest of berry fruits.

Black chokeberry exerts anti-inflammatory, antiatherosclerotic, hypotensive, anticoagulant, antithrombotic, and antiplatelet activities, making it especially valuable for cardiovascular health. It also has immunomodulatory, antiviral, and antibacterial effects. Black chokeberry extract decreases the expression of genes for cholesterol synthesis, uptake, and efflux dose-dependently in humans. It is known for its gastroprotective effects, especially against peptic ulcer, and for its antidiabetic effects, improving fasting glucose and lipid profiles. Anthocyanins may help prevent obesity and, by inhibiting α-glucosidase and α-amylase activities, reduce postprandial hyperglycemia. Aronia spp. extracts benefit risk factors related to insulin resistance, modulating multiple associated pathways. Black chokeberry anthocyanins can normalize carbohydrate metabolism. The anticancer effects of black chokeberry also operate through numerous pathways and mechanisms, including induction of detoxication enzymes, induction of cell cycle arrest apoptosis, and changes in cellular signaling. In vitro, it retards or halts the growth of human breast, leukemia, colon, and cervical cancer lines. Black chokeberry may reduce oxidative stress in patients with cancer before and after surgery. Different extracts and polyphenolic compounds may affect different cancer cell lines more or less strongly. Overall, black chokeberry, like other less-utilized berry crops, offers many positive benefits for prevention and treatment of chronic diseases. While some human trials are mentioned, more research is clearly warranted.

—Mariann Garner-Wizard

Aronia vermindert cellulitis

Een dagelijks minuscuul kopje met sap van de superbes Aronia vermindert niet al te serieuze vormen van cellulitis. Dat ontdekten Sevische onderzoekers die Aroniasap gaven aan een kleine dertig volwassen vrouwen.

Cellulitis

Cellulitis ontstaat doordat het vet in de vetlagen pal onder de huid een korrelige structuur krijgt. Dat kan gebeuren doordat de compartimenten waaruit het vetweefsel bestaat - de onderzoekers noemen die subcutaneous tissue fascicles - groter worden. Dat kan ook gebeuren doordat de collageenstructuren die de subcutaneous tissue fascicles omsluiten in het vetweefsel hun souplesse verliezen of slinken. Een populaire theorie is dat beide processen het gevolg zijn van het dichtslibben van onderhuidse haarvaten.

Linksonder zie je gezonde huid; rechtsonder een huid met cellulitis.

Studie

Geef je mensen anthocyanins uit bessen of ander fruit, dan worden hun haarvaten soepeler, wijder en functioneler. Het zou dus zomaar kunnen dat suppletie met de superbes Aronia melanocarpa cellulitis vermindert, beredeneerden onderzoekers van de universiteit van Belgrado. En dus verzamelden ze 29 vrouwen van 25-48 jaar met Grade 2-cellulitis, en gaven die gedurende 90 dagen 100 ml arionasap per dag. Het ging om een door Conimex geproduceerd product dat in Servische supermarkten verkrijgbaar is.

Voor en na de suppletie brachten de onderzoekers de onderhuidse met scans de onderhuidse structuur in beeld. Zo konden ze zien dat Aronia de subcutaneous tissue fascicles kleiner maakte [rechts in de tabel hieronder].

Conclusie

"Results obtained in this study showed marked potential of anthocyanin-rich chokeberry juice to improve the morphology of skin and subcutaneous tissue in the regions affected by cellulite under in vivo conditions", concluderen de onderzoekers. "These findings add new evidence in the dossier of beneficial effects of anthocyanins and postulate a new research strategy for both prevention and treatment of cellulite."

Sponsor

Het onderzoek is betaald door de Servische overheid.

Bron: J Med Food. 2014 May;17(5)

Aronia verhoogt thermogenese

Haal jij je sweaters al uit de kast als de rest van de wereld nog in een t-shirt rondloopt? Dan heb jij waarschijnlijk wat in de Aziatische traditionele geneeskunde 'een koude constitutie' heet. In dat geval kan suppletie met aroniabessen je misschien helpen, aldus onderzoekers van Kyoto Prefectural University in Japan. En diezelfde aroniabessen, voegen wij daar overmoedig aan toe, laten bovendien je afslanksupplementen beter werken.

Aronia

De - niet erg smakelijke - gedroogde bessen van Aronia melanocarpa liggen bij natuurvoedingswinkels en groentenzaken met het predicaat superfood in de schappen. Als je weet hoe hoog de ORAC-waarde van aronia is, dan dan snap je waarom. Hoe hoger de ORAC-waarde van een voedingsmiddel, des te groter is zijn antioxidantwerking in reageerbuizen.

Aronia verhoogt thermogenese

Minder koud

De Japanners gaven 11 vrouwen, die al snel klaagden over kou, gedurende 4 weken elke dag 150 mg Aronia-extract. De onderzoekers maakten hun extracten zelf, op basis van water en ethanol.

Voor en na de suppletie lieten de onderzoekers de vrouwen het gevoel van kou/warmte en stijfheid in hun ledematen een cijfer geven. Je ziet hieronder dat de suppletie het koudegevoel in handen, voeten en heupen statistisch significant verminderde.

Suppletie met aronia maakte ook de schouders minder stijf, maar dat effect was niet statistisch significant.

Thermogenese

De onderzoekers zetten de vrouwen in een koele kamer, en bepaalden de bloedtoevoer naar de huid en de temperatuur van hun huid.

Aronia-suppletie verhoogde in het bloed de concentratie van het natuurlijke pephormoon nor-adrenaline. De Japanners vermoeden dat ze daarmee een stukje van het mechanisme achter het aronia-effect hebben opgehelderd. Nor-adrenaline laat cellen meer warmte aanmaken.

Speculatie

"Takikawa et al. [J Nutr. 2010 Mar;140(3):527-33.] reported that an anthocyanin, cyanidin 3-glucoside, enhances adiponectin secretion and upregulates the expression of thermogenesis-related proteins, such as uncoupling proteins, in isolated rat adipocytes", speculeren de Japanners. "Cyanidin 3-glucoside also activates adenosine monophosphate (AMP)-activated protein kinase (AMPK) in skeletal muscle and liver."

"In addition to the direct effect of anthocyanins on improving metabolism in metabolic organs, circulating levels of catecholamine may be an inducer of thermogenesis in these organs."

"Aronia has been shown to attenuate exercise-induced oxidative damage associated with an improvement in exercise tolerance and other physiological parameters." [Int J Sport Nutr Exerc Metab. 2005 Feb;15(1):48-58.]

Bron:

Springerplus. 2013 Nov 21;2:626. doi: 10.1186/2193-1801-2-626. eCollection 2013.