Capsicum sp. / Rode peper

Capsicum soorten, zoals Spaanse peper, Paprika en Cayennepeper behoren tot de familie der Solanaceae of Nachtschadefamilie, van oorsprong komen zij uit Mexico, Midden Amerika, West Indië en een groot deel van Zuid Amerika. De scherpe smaak, te danken aan de stof capsaïcine, heeft er voor gezorgd dat deze planten wereldwijd verspreid werden en steeds meer gewaardeerd worden. Ook de medicinale werking word in wetenschappelijk onderzoek steeds beter onderbouwd.

https://kunst-en-cultuur.infonu.nl/geschiedenis/27228-pepers-op-het-spoor.html

Crit Rev Food Sci Nutr. 2016 Jul 3;56(9):1488-500.

Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Srinivasan K1.

Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum) has been extensively studied for its biological effects which are of pharmacological relevance. These include: cardio protective influence, antilithogenic effect, antiinflammatory, and analgesia, thermogenic influence, and beneficial effects on gastrointestinal system. Therefore, capsaicinoids may have the potential clinical value for pain relief, cancer prevention and weight loss. It has been shown that capsaicinoids are potential agonists of capsaicin receptor (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of neuropeptide Substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Topical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion, stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and antiinflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardio protective has other implications, viz., prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients.

Red pepper, with the scientific name of Capsicum annuum, belongs to the Solanaceae family (14). Red pepper includes different plants with common names including chili pepper, tabasco pepper, african chilies, cayenne pepper, paprika (15) and also christmas pepper (14). Red pepper originated in the South America where they used in favor of medicinal and culinary purpose (15).

In addition to the use of capsicum fruits as a food additive, in traditional medicine, it has been used for the treatment of cough, toothache, sore throat, parasitic infections, rheumatism, wound healing (15) and also utilized as an antiseptic, counterirritant, appetite stimulator (16), antioxidant and immunomodulator (17) (Figure 1). Other effects such as antibacterial and anticancer are also related to chilies (16). Red pepper as a drug is given in atonic dyspepsia and flatulence (16) due to increasing the motility in the gastric antrum, duodenum, proximal jejunum and colon (17). It can also increase parietal, pepsin, and bile acid secretions (14). Chilies are known to protect against gastrointestinal ailments (18) including dyspepsia (17), loss of appetite, gastroesophageal reflux disease and gastric ulcer (17) due to the several mechanisms such as reducing the food transition time through the gastrointestinal tract and anti-Helicopylori effects (18). Moreover, the leaves of its plant have antioxidant activity (19).

The medicinal effects of chilies are related to different constituents such as capsaicin, fixed oil, thiamine, protein and ascorbic acid (16).

Capsaicin, water-insoluble derivative of homovanillic acid (21) and the main active ingredient in capsicum fruits, is responsible for hot sensation to the tongue (14) and is utilized for the treatment of inflammatory disorders such as psoriasis and rheumatoid arthritis (15), diabetic neuropathy, postherpetic neuralgia, cluster headache, postmastectomy syndrome, reflex sympathetic dystrophy (16), dermatitis or eczema itching (14), postoperative nausea and vomiting, bladder hyperactivity (22), gallstone (23), anorexia, haemorrhoids, liver congestion, foodborne gastrointestinal pathogens including Listeria monocytogenes, Salmonella typhimurium and Bacillus cereus (17), tonsillitis and rhinitis and fibromyalgia (15). It is also used as pesticides (24) analgesic, antiobesity, antihypertensive (15, 22), antiarrhythmic, antiischemic (22, 25), and gastroprotective agent (16). It can stimulate saliva and digestive enzymes of the pancreas, small intestine (17), and also stimulate hair growth in alopecia areata. Anticoagulant activity, prevention of aspiration pneumonia (21), protecting neuromuscular junctions from Clostridium botulinum neurotoxin A and improving cognitive function are also attributed to capsaicin beneficial properties (15).

Topically applied capsaicin is used in migrane, trigeminal neuralgia, herpes zoster (17), chronic musculoskeletal pain (26) and skin disorders (15).

Different studies indicated that red pepper and its active constituent, capsaicin, have therapeutic potential in different components of metabolic syndrome.

References

1. Marjani A. A Review on metabolic syndrome. J Endocrinol Metab. 2012;2:166–170.

2. Jungbauer A, Medjakovic S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas. 2012;71:227–239. [PubMed]

3. Akaberi M, Hosseinzadeh H. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome. Phtother Res. 2016;30:540–556. [PubMed]

4. Razavi B, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest. 2014;37:1031–1040. [PubMed]

5. Hosseini A, Hosseinzadeh H. A review on the effects of Allium sativum(Garlic) in metabolic syndrome. J Endocrinol Invest. 2015;38:1147–1157. [PubMed]

6. Vahdati Hassani F, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome:a review. Naunyn-Schmiedeberg's Arch Pharmacol. 2016;389:931–949. [PubMed]

7. Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome:a comprehensive systematic review. Phytother Res. 2017;31:819–837. [PubMed]

8. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci. 2017;20:557–568.[PMC free article] [PubMed]

9. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome:a review based on its mechanisms. Iran J Basic Med Sci. 2016;19:1258–1270. [PMC free article] [PubMed]

10. Hosseinzadeh H, Nassiri-Asl M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest. 2014;37:783–788. [PubMed]

11. Razavi B, Hosseinzadeh H. Saffron:a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric. 2016;97:1679–1685. [PubMed]

12. Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytother Res. 2017;31:1173–1182. [PubMed]

13. Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother. 2017;92:726–731. [PubMed]

14. Barceloux DG. Pepper and capsaicin (Capsicum and Piper species) Dis Mon. 2009;55:380–390.[PubMed]

15. Singletary K. Red pepper:overview of potential health benefits. Nut Today. 2011;46:33–47.

16. Pawar SS, Bharude NV, Sonone SS, Deshmukh RS, Raut AK, Umarkar AR. Chilles as food, spice and medicine:a perspective. Int J Pharm Biol Sci. 2011;1:311–318.

17. Maji AK, Banerji P. Phytochemistry and gastrointestinal benefits of the medicinal spice Capsicum annuum L.(Chilli):a review. J Complement Integr Med. 2016;13:97–122. [PubMed]

18. Low Dog T. A reason to season:the therapeutic benefits of spices and culinary herbs. Explore (NY) 2006;2:446–449. [PubMed]

19. Kim W-R, Kim EO, Kang K, Oidovsambuu S, Jung SH, Kim BS, et al. Antioxidant activity of phenolics in leaves of three red pepper (Capsicum annuum) cultivars. J Agric Food Chem. 2014;62:850–859. [PubMed]

20. Ludy M-J, Moore GE, Mattes RD. The effects of capsaicin and capsiate on energy balance:critical review and meta-analyses of studies in humans. Chem Senses. 2012;37:103–21. [PMC free article][PubMed]

21. Papoiu AD, Yosipovitch G. Topical capsaicin. The fire of a 'hot'medicine is reignited. Expert Opin Pharmacother. 2010;11:1359–1371. [PubMed]

22. Hayman M, Kam PC. Capsaicin:a review of its pharmacology and clinical applications. Curr Anaesth Crit Care. 2008;19:338–343.

23. Srinivasan K. Spices as influencers of body metabolism:an overview of three decades of research. Food Res Int. 2005;38:77–86.

24. Wesolowska A, Jadczak D, Grzeszczuk M. Chemical composition of the pepper fruit extracts of hot cultivars Capsicum annuum L. Acta Sci Pol Hortorum Cultus. 2011;10:171–184.

25. D'Alonzo AJ, Grover GJ, Darbenzio RB, Hess TA, Sleph PG, Dzwonczyk S, et al. In vitro effects of capsaicin:antiarrhythmic and antiischemic activity. Eur J Pharmacol. 1995;272:269–278. [PubMed]

26. Mason L, Moore RA, Derry S, Edwards JE, McQuay HJ. Systematic review of topical capsaicin for the treatment of chronic pain. BMJ. 2004;328:991. [PMC free article] [PubMed]

27. Mueller M, Beck V, Jungbauer A. PPARalpha activation by culinary herbs and spices. Planta Med. 2011;77:497–504. [PubMed]

28. Negulesco J A, Noel S A, Newman HAI. Effect of pure capsaicinoids (capsaicin and dihydrocapsaicin) on plasma lipids and lipoprotein concentrations of turmey poults. Atherosclerosis. 1987;64:85–90.[PubMed]

29. Kempaiah RK, Srinivasan K. Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats. J Nutr Biochem. 2006;17:471–478. [PubMed]

30. Pande S, Srinivasan K. Potentiation of hypolipidemic and weight-reducing influence of dietary tender cluster bean (Cyamopsis tetragonoloba) when combined with capsaicin in high-fat-fed rats. J Agric Food Chem. 2012;60:8155–8162. [PubMed]

31. Otunola G, Oloyede O, Oladiji A, Afolayan A. Hypolipidemic effect of aqueous extracts of selected spices and their mixture on diet-induced hypercholesterolemia in Wistar rats. Can J Pure Appl Sci. 2012;6:2063–2071.

32. Kwon MJ, Song YS, Choi MS, Song YO. Red pepper attenuates cholesteryl ester transfer protein activity and atherosclerosis in cholesterol-fed rabbits. Clin Chim Acta. 2003;332:37–44. [PubMed]

33. Manjunatha H, Srinivasan K. Hypolipidemic and antioxidant effects of dietary curcumin and capsaicin in induced hypercholesterolemic rats. Lipids. 2007;42:1133–1142. [PubMed]

34. Kim Y, Park Y-J, Yang S-O, Kim S-H, Hyun S-H, Cho S, et al. Hypoxanthine levels in human urine serve as a screening indicator for the plasma total cholesterol and low-density lipoprotein modulation activities of fermented red pepper paste. Nut Res. 2010;30:455–461. [PubMed]

35. Lim J-H, Jung E-S, Choi E-K, Jeong D-Y, Jo S-W, Jin J-H, et al. Supplementation with Aspergillus oryzae-fermented kochujang lowers serum cholesterol in subjects with hyperlipidemia. Clin Nut. 2015;34:383–387. [PubMed]

36. Ilevbare FR, Okparume DE, Erhirhie EOO. EL The roles of capsicum in diabetes mellitus. Wilolud J. 2013;6:22–27.

37. Watcharachaisoponsiri T, Sornchan P, Charoenkiatkul S, Suttisansanee U. The α-glucosidase and α-amylase inhibitory activity from different chili pepper extracts. Int Food Res J. 2016;23:1439–1445.

38. Tundis R, Loizzo MR, Menichini F, Bonesi M, Conforti F, Statti G, et al. Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum) Plant Foods Hum Nutr. 2011;66:261–269. [PubMed]

39. Earnest EO, Lawrence E, Ilevbare FR. The roles of capsicum in diabetes mellitus. Wilolud J. 2013;6:22–27.

40. Sun F, Xiong S, Zhu Z. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction. Nutrients. 2016:8. [PMC free article] [PubMed]

41. Magied MMA, Salama NAR, Ali MR. Hypoglycemic and Hypocholesterolemia Effects of Intragastric Administration of Dried Red Chili Pepper (Capsicum Annum) in Alloxan-Induced Diabetic Male Albino Rats Fed with High-Fat-Diet. J Food Nut Res. 2014;2:850–856.

42. Roghani M, Baluchnejadmojarad T, Sohrabi Z, Sadeghi M. Anti-hyperlycemic and hypolipidemic effect of oral administration of Capsicum frutescens in male STZ-diabetic rats. J Med Plants. 2004;2:47–52.

43. Chen L, Kang Y-H. In Vitro Inhibitory Potential Against Key Enzymes Relevant for Hyperglycemia and Hypertension of Red Pepper (Capsicum annuum L.) Including Pericarp, Placenta, and Stalk. J Food Biochem. 2014;38:300–306.

44. Ahuja KD, Robertson IK, Geraghty DP, Ball MJ. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. Am J Clin Nutr. 2006;84:63–69. [PubMed]

45. Yuan LJ, Qin Y, Wang L, Zeng Y, Chang H, Wang J, et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin Nutr. 2016;35:388–393. [PubMed]

46. Deng PY, Li YJ. Calcitonin gene-related peptide and hypertension. Peptides. 2005;26:1676–1685.[PubMed]

47. Zhang MJ, Yin YW, Li BH, Liu Y, Liao SQ, Gao CY, et al. The role of TRPV1 in improving VSMC function and attenuating hypertension. Prog Biophys Mol Biol. 2015;117:212–216. [PubMed]

48. Adefegha SA, Oboh G. Phytochemistry and mode of action of some tropical spices in the management of type-2 diabetes and hypertension. African J Pharm Pharmacol. 2013;7:332–46.

49. Jeon G, Choi Y, Lee S-M, Kim Y, Jeong H-S, Lee J. Antiobesity activity of methanol extract from hot pepper (Capsicum annuum L.) seeds in 3T3-L1 adipocyte. Food Sci Biotechnol. 2010;19:1123–1127.

50. Virus RM, Knuepfer MM, McManus DQ, Brody MJ, Gebhart GF. Capsaicin treatment in adult Wistar-Kyoto and spontaneously hypertensive rats:effects on nociceptive behavior and cardiovascular regulation. Eur J Pharmacol. 1981;72:209–217. [PubMed]

51. Rioux F, Lemieux M, Roy G. Capsaicin-sensitive primary afferents are involved in the hypotensive effect of neurotensin in ganglion-blocked guinea pigs. Peptides. 1989;10:1033–40. [PubMed]

52. Wimalawansa SJ. The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP. Peptides. 1993;14:247–252. [PubMed]

53. Lukovic L, de Jong W, de Wied D. Cardiovascular effects of substance P and capsaicin microinjected into the nucleus tractus solitarii of the rat. Brain Res. 1987;422:312–318. [PubMed]

54. Massi M, Polidori C, Perfumi M, Ciccocioppo R, De Caro G, Bacciarelli C, et al. Effect of capsaicin neonatal treatment on the salt intake of the adult rat. Pharmacol Biochem Behav. 1991;40:163–168.[PubMed]

55. Perez H, Ruiz S, Soto-Moyano R. Prenatal malnutrition-induced hypertension in young rats is prevented by neonatal capsaicin treatment. Neurosci Lett. 2002;328:253–256. [PubMed]

56. Potenza MA, De Salvatore G, Montagnani M, Serio M, Mitolo-Chieppa D. Vasodilatation induced by capsaicin in rat mesenteric vessels is probably independent of nitric oxide synthesis. Pharmacol Res. 1994;30:253–261. [PubMed]

57. Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab. 2010;12:130–141.[PMC free article] [PubMed]

58. Sessa WC. A new way to lower blood pressure:pass the chili peppers please!Cell Metab. 2010;12:109–110. [PubMed]

59. Wang Q, Ma S, Li D, Zhang Y, Tang B, Qiu C, et al. Dietary capsaicin ameliorates pressure overload-induced cardiac hypertrophy and fibrosis through the transient receptor potential vanilloid type 1. Am J Hypertens. 2014;27:1521–1529. [PubMed]

60. Kwon Y-I, Apostolidis E, Shetty K. Evaluation of pepper (Capsicum annum) for management of diabetes and hypertension. J Food Biochem. 2007;31:370–385.

61. Patane S, Marte F, La Rosa FC, La Rocca R. Capsaicin and arterial hypertensive crisis. Int J Cardiol. 2010;144:e26–27. [PubMed]

62. Patane S, Marte F, Di Bella G, Cerrito M, Coglitore S. Capsaicin, arterial hypertensive crisis and acute myocardial infarction associated with high levels of thyroid stimulating hormone. Int J Cardiol. 2009;134:130–132. [PubMed]

63. Dutta A, Deshpande SB. Mechanisms underlying the hypertensive response induced by capsaicin. Int J Cardiol. 2010;145:358–359. [PubMed]

64. Baek J, Lee J, Kim K, Kim T, Kim D, Kim C, et al. Inhibitory effects of Capsicum annuum L. water extracts on lipoprotein lipase activity in 3T3-L1 cells. Nutr Res Pract. 2013;7:96–102. [PMC free article][PubMed]

65. Gamboa-Gomez CI, Rocha-Guzman NE, Gallegos-Infante JA, Moreno-Jimenez MR, Vazquez-Cabral BD, Gonzalez-Laredo RF. Plants with potential use on obesity and its complications. Excli J. 2015;14:809–831. [PMC free article] [PubMed]

66. Woo H-M, Kang J-H, Kawada T, Yoo H, Sung M-K, Yu R. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life Sci. 2007;80:926–931. [PubMed]

67. Reinbach HC, Smeets A, Martinussen T, Møller P, Westerterp-Plantenga M. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin Nut. 2009;28:260–265. [PubMed]

68. Zhang H, Matsuda H, Nakamura S, Yoshikawa M. Effects of amide constituents from pepper on adipogenesis in 3T3-L1 cells. Bioorg Med Chem Lett. 2008;18:3272–3277. [PubMed]

69. Marrelli M, Menichini F, Conforti F. Hypolipidemic and Antioxidant Properties of Hot Pepper Flower (Capsicum annuum L.) Plant Foods Hum Nutr. 2016;71:301–306. [PubMed]

70. Do MS, Hong SE, Ha JH, Choi SM, Ahn IS, yoon JY, et al. Increased lipolytic activity by high-pungency red pepper extract (var. chungyang) in rat adipocytes in vitro. J Food Sci Nutr. 2004;9:34–38.

71. Hwang J-T, Park I-J, Shin J-I, Lee YK, Lee SK, Baik HW, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun. 2005;338:694–699. [PubMed]

72. Kang J-H, Kim C-S, Han I-S, Kawada T, Yu R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. Febs Lett. 2007;581:4389–4396. [PubMed]

73. Leung FW. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sci. 2008;83:1–5. [PubMed]

74. Yoshioka M, St-Pierre S, Drapeau V, Dionne I, Doucet E, Suzuki M, et al. Effects of red pepper on appetite and energy intake. Br J Nutr. 1999;82:115–123. [PubMed]

75. Tan S, Gao B, Tao Y, Guo J, Su Z-q. Antiobese Effects of Capsaicin–Chitosan Microsphere (CCMS) in Obese Rats Induced by High Fat Diet. J Agr Food Chem. 2014;62:1866–74. [PubMed]

76. Falchi M, Bertelli A, Ferrara F, Galazzo R, Galazzo S, Gharib C, et al. Intracerebroventricular capsaicin influences the body weight increasing of rats. Brain Res Bull. 2008;77:253–256. [PubMed]

77. Lee GR, Shin MK, Yoon DJ, Kim AR, Yu R, Park NH, et al. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice. Obesity. 2013;21:115–122. [PubMed]

78. Sung J, Lee J. Capsicoside G, a furostanol saponin from pepper (Capsicum annuum L.) seeds, suppresses adipogenesis through activation of AMP-activated protein kinase in 3T3-L1 cells. J Funct Foods. 2016;20:148–158.

79. Whiting S, Derbyshire E, Tiwari BK. Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence. Appetite. 2012;59:341–348. [PubMed]

80. Yoshioka M, Imanaga M, Ueyama H, Yamane M, Kubo Y, Boivin A, et al. Maximum tolerable dose of red pepper decreases fat intake independently of spicy sensation in the mouth. Br J Nut. 2004;91:991–995.[PubMed]

81. Yoshioka M, St-Pierre S, Suzuki M, Tremblay A. Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br J Nutr. 1998;80:503–510. [PubMed]

82. Westerterp-Plantenga M, Diepvens K, Joosen AM, Berube-Parent S, Tremblay A. Metabolic effects of spices, teas, and caffeine. Physiol Behav. 2006;89:85–91. [PubMed]

83. Smeets AJ, Westerterp-Plantenga MS. The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. Eur J Nutr. 2009;48:229–234. [PMC free article] [PubMed]

84. Nieman DC, Cialdella-Kam L, Knab AM, Shanely RA. Influence of red pepper spice and turmeric on inflammation and oxidative stress biomarkers in overweight females:a metabolomics approach. Plant Foods Hum Nutr. 2012;67:415–421. [PubMed]

85. Ohnuki K, Niwa S, Maeda S, Inoue N, Yazawa S, Fushiki T. CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans. Biosci Biotechnol Biochem. 2016;5:2033–2036. [PubMed]

86. Hachiya S, Kawabata F, Ohnuki K, Inoue N, Yoneda H, Yazawa S, et al. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans. Biosci Biotechnol Biochem. 2007;71:671–676. [PubMed]

87. Yang HJ, Kwon DY, Kim MJ, Kim DS, Kang S, Shin BK, et al. Red peppers with different pungencies and bioactive compounds differentially modulate energy and glucose metabolism in ovariectomized rats fed high fat diets. J Funct Foods. 2014;7:246–256.

88. Fernandez-Lopez JA, Remesar X, Foz M, Alemany M. Pharmacological approaches for the treatment of obesity. Drugs. 2002;62:915–944. [PubMed]

Capsaïcine en de Scovilleschaal

Hiernaast of hieronder zie je de Scovilleschaal. Deze schaal is in 1912 ontworpen door Wilbur Scoville om de heetheid van chilipepers te meten. Oorspronkelijk werd de heetheid gemeten door de extracten van pepers te verdunnen. De hoeveelheid keer dat er verdund moet worden tot het moment dat er geen scherpte meer werd waargenomen geeft de hoeveelheid Scoville Units aan. De Jalapeno moet dus (zie schaal) maximaal 8000 keer verdund worden om niet meer waargenomen te worden. Eén druppel extract van de heetste peper ter wereld (Carolina Reaper) moet maar liefst meer dan twee miljoen keer verdund worden om niet meer waargenomen te worden. Een paprika of tomaat heeft een Scovillewaarde van 0. Een gerecht wordt over het algemeen als heet ervaren bij een Scovillewaarde van 500-1000. Pepperspray van de politie heeft een waarde van 5.300.000 SHU.

Het aantal Scoville Units (SHU) geeft de hoeveelheid Capsaïcine aan. Capsaïcine is de werkzame stof die de pepers hun scherpte geven. Tegenwoordig wordt de scherpte bepaald door de hoeveelheid Capsaïcine te meten (door middel van chromatografie). Pure Capsaïcine heeft een waarde van 15 tot 16 miljoen SHU. De chemische stof is erg stabiel, verdampt nauwelijks en ontleedt niet door koken.

Chemische structuur Capsaïcine:

In pepers komen een vijftal nauw verwante verbindingen voor met soortgelijke effecten, waarvan Capsaïcine en Di-hydrocapsaïcine de voornaamste zijn.

Wanneer capsaicïne in de mond aanwezig is, geven zenuwen een soortgelijk signaal door naar de hersenen dat door wordt gegeven wanneer je je mond verbrandt bij heet eten (boven de 43 graden). Het lichaam reageert door endorfine vrij te maken. Endorfine wordt ook wel het gelukshormoon genoemd en geeft een prettig gevoel en verzacht de pijn. Aan Capsaïcine en dus heet eten kun je wennen. Men moet steeds heter eten om de effecten van Capsaïcine te ervaren. Voor velen is heet eten een fijne verslaving. Vogels zijn niet gevoelig voor Capsaïcine en zijn daardoor de belangrijkste transporteur van de zaden.

Wanneer je te heet hebt gegeten is een glaasje melk beter dan een glaasje water. Capsaïcine is slecht oplosbaar in water en veel beter in vet. Ook een alcoholische drank helpt beter om de boel te ‘blussen’.