Artemisia annua / Zomeralsem

Around 300 different species of Artemisia (mugwort, wormwood) are found, mostly in temperate climate zones. Artemisia Annua specifically, has been well known in Chinese folk medicine for the last 2000 years. Only recently has it come to the attention of researcher’s because of its potent anti-malarial properties.

Efficacy against Malaria and Plasmodium

The main ingredient of the plant is Artemisinin, a patented malaria drug, which is manufactured mostly in China and India. It is considered to be one of the best drugs against malaria, but as with all single substance drugs a few cases of drug resistance have been reported. Yet, if one makes use of a plant extract, drug resistance is practically impossible, because the plant contains more than 9 agents which are effective against malaria. The malaria parasite ‘Plasmodium’ is a single-celled parasite which in contrast to bacteria has a cell nucleus. One cannot develop resistance against a volley of several concomitant substances, which is surely not the case with mono-substances. Unfortunately, the pharmaceutical industry works almost exclusively with mono-substances, and therefore several good anti-malarial drugs are now almost useless. There is a high risk that this could happen to Artemisinin.

The efficacy of Artemisia Annua against malaria has been confirmed by hundreds if not thousands of testimonies worldwide, people who have been healed from malaria just by using this plant extract. Through a simple plant called Artemisia annua, the poorest people in Africa – who cannot afford expensive drugs – can be helped effectively.

No resistance by taking the unprocessed plant

It is important to know that with the use of the Artemisia Annua plant worldwide, no known cases of drug resistance have occurred and probably will not occur because of the biological interaction of the 10 different substances. In the case of malaria it is therefore important to use the complete plant extract and not only a drug. The clinical cure rate for malaria is 90% to 95 %, the patient is healthy even though the plasmodium may remain in the blood asymptomatically.

Efficacy against infectionsThe plant Artemisia Annua is very well researched. Apart from Arteminsinin, a further 245 different substances have already been identified and isolated, including numerous anti-inflammatory polyphenols. In contrast to most drugs, to date almost no side effects have been reported. The only contra-indications are for people suffering with stomach ulcers and/or stomach acid.

Efficacy against cancer

Observations have been made with Malaria patients who were using Artemisia Annua who also suffered with other serious diseases such as AIDS and cancer. Amazingly, these diseases have improved significantly during the treatment with Artemisia Annua. In fact, there are already many scientific studies which indicate successes. On the website of the U.S. national library of medicine (www.ncbi.nlm.nih.gov/pubmed) 497 general studies and 51 studies on cancer are listed on Artemisia Annua. Memorial Sloan-Kettering, attested distinct anti-cancer properties in vitro to this plant (www.mskcc.org/cancer-care/herb/artemisia-annua). Yet, to advertise the plant as a miracle cure would be frivolous. Further tests are necessary.

Artemisia – how it works

Artemisia annua exhibits a chemically stable peroxide, which is unheard of in chemistry. Plasmodia and cancer cells contain 10 to 20 times more iron ions than normal cells. The peroxide "breaks" this iron, which is immediately transformed into two very aggressive free radicals which then kill the affected cell rapidly. So the cancer cell gets ‘cancer’ and dies. Basically any type of cancer can be treated with Artemisia annua. To date, there are very few practical or clinical studies and so little can be said about the success rate. 

Efficacy against viral infections and AIDSThere is even strong evidence that suggests viruses can be fought with Artemisia Annua, especially in the early stages of a disease. Among the cured malaria patients, there were those who also suffered with AIDS. In these cases the disease was improved and in some cases even cured. The anti-viral qualities of Artemisia Annua are demonstrated by the following studies:  www.ncbi.nlm.nih.gov/pubmed/16902856 / www.cid.oxfordjournals.org/content/47/6/804.full In my personal environment I get feedback from friends who take Artemisia ground powder at the first sign of a cold / flu and feel in perfect health again the next day. These reports are encouraging, but there is not yet a scientific basis to support the claim.

Antibacterial effect

There is now evidence of an effect against bacteria yet the evidence is still sparse. There are observations of anti-bacterial properties in vitro on gram-positive and gram-negative bacteria. Slightly better is the data available on leishmaniasis and the African sleeping sickness, caused by protozoa, which however is not applicable in a European context.

Artemisia Annua can have a preventive or curative effect on the following:

In Switzerland and the EU, Artemisia annua is not approved as a medicinal herb (Artemisia vulgaris only as a spice). It would be interesting to conduct research on a small scale and on a voluntary basis to determine the efficacy of this plant against the above mentioned diseases. To date no side effects have been observed by me or people working in my sphere of influence. Please contact me if you are interested in any aspect of this Plant.

Phytomedicine. 2011 Aug 15;18(11):959-69. Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin. Efferth T, Herrmann F, Tahrani A, Wink M.

Artemisia annua L. (sweet wormwood, qinhao) has traditionally been used in Chinese medicine. The isolation of artemisinin from Artemisia annua and its worldwide accepted application in malaria therapy is one of the showcase success stories of phytomedicine during the past decades. Artemisinin-type compounds are also active towards other protozoal or viral diseases as well as cancer cells in vitro and in vivo. Nowadays, Artemisia annua tea is used as a self-reliant treatment in developing countries. The unsupervised use of Artemisia annua tea has been criticized to foster the development of artemisinin resistance in malaria and cancer due to insufficient artemisinin amounts in the plant as compared to standardized tablets with isolated artemisinin or semisynthetic artemisinin derivatives. However, artemisinin is not the only bioactive compound in Artemisia annua. In the present investigation, we analyzed different Artemisia annua extracts. Dichloromethane extracts were more cytotoxic (range of IC₅₀: 1.8-14.4 μg/ml) than methanol extracts towards Trypanosoma b. brucei (TC221 cells). The range of IC₅₀ values for HeLa cancer cells was 54.1-275.5 μg/ml for dichloromethane extracts and 276.3-1540.8 μg/ml for methanol extracts. Cancer and trypanosomal cells did not reveal cross-resistance among other compounds of Artemisia annua, namely the artemisinin-related artemisitene and arteanuine B as well as the unrelated compounds, scopoletin and 1,8-cineole. This indicates that cells resistant to one compound retained sensitivity to another one. These results were also supported by microarray-based mRNA expression profiling showing that molecular determinants of sensitivity and resistance were different between artemisinin and the other phytochemicals investigated.

Toxicology

Artemisinin derived drugs are available for the treatment of malaria. Except for two case reports, no major side effects have been reported in humans at doses used for the treatment of malaria but it is still unknown whether the higher doses required for the treatment of cancer patients could cause major side effects. In vivo studies showed that doses of artemisinin-related endoperoxides of at least 5 times higher than those used for antimalaria therapy are required in order to induce an effect. The safety of such doses has not yet been evaluated in Phase I clinical trials.

A first case report describes a boy who received artesunate suppositories and died 13 days.25 He had received a dose 7-fold higher than the maximum recommended dose which reportedly led to toxicity of the brain stem.

In a second case report a woman with recently resected early breast carcinoma described symptoms of toxic brainstem encephalopathy.26 Since this neurotoxicity has also been seen in animals, the authors of the case report ascribe the toxicity to artemisinin consumption, although she received also chemotherapy and a mixture of other herbs on top.

On the other hand, a review of the toxicity of artemisinin derivatives suggested that the toxicity seen in laboratory animals does not necessarily occur in humans due to the differences in pharmacokinetic profile after different routes of administration. The oral administration used in humans is unlikely to cause the neurotoxicity seen after intramuscular administration in mice.

Adverse events

It has been reported that the oral intake of A. annua may cause abdominal pain, bradycardia (abnormally slow heartbeat), diarrhoea, nausea, vomiting, decreased appetite, flu-like symptoms, fever, and decreased reticulocyte count.

Topical application of A. annua may cause dermatitis.

Interactions

Experimental studies showed additive or synergistic activities with antineoplastics, antibiotics, antifungals, sodium butyrate, and chloroquine, where it could become more effective in fever subsidence and disappearance of malarial symptoms.7

References

Legal notice

The present documentation has been compiled by the CAM-CANCER Project with all due care and expert knowledge. However, the CAM-CANCER Project provides no assurance, guarantee or promise with regard to the correctness, accuracy, up-to-date status or completeness of the information it contains. This information is designed for health professionals. Readers are strongly advised to discuss the information with their physician. Accordingly, the CAM-CANCER Project shall not be liable for damage or loss caused because anyone relies on the information.

http://apps.who.int/medicinedocs/documents/s14074e/s14074e.pdf Artemisia annua - Pharmacology and Biotechnology. Tariq Aftab,Jorge F.S. Ferreira,M. Masroor A. Khan,M. Naeem

J Ethnopharmacol. 2012 Jun 14;141(3):854-9. doi: 10.1016/j.jep.2012.03.024. Epub 2012 Mar 24. Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. Lubbe A1, Seibert I, Klimkait T, van der Kooy F.

Artemisia annua contains the well-known antimalarial compound artemisinin, which forms the backbone of the global malaria treatment regime. In African countries a tea infusion prepared from Artemisia annua has been used for the treatment of malaria only for the past 10-20 years. Several informal claims in Africa exist that the Artemisia annua tea infusions are also able to inhibit HIV. Since HIV is a relatively newly emerged disease, the claims, if substantiated, could provide a very good example of "ethnopharmacology in overdrive". The objective of this study was to provide quantitative scientific evidence that the Artemisia annua tea infusion exhibits anti-HIV activity through in vitro studies. A second objective was to determine if artemisinin plays a direct or indirect (synergistic) role in any observed activity. This was done by the inclusion of a chemically closely related species, Artemisia afra, known not to contain any artemisinin in our studies.

MATERIALS AND METHODS:

Validated cellular systems were used to test Artemisia annua tea samples for anti-HIV activity. Two independent tests with different formats (an infection format and a co-cultivation format) were used. Samples were also tested for cellular toxicity against the human cells used in the assays.

RESULTS:

The Artemisia annua tea infusion was found to be highly active with IC(50) values as low as 2.0 μg/mL. Moreover we found that artemisinin was inactive at 25 μg/mL and that a chemically related species Artemisia afra (not containing artemisinin) showed a similar level of activity. This indicates that the role of artemisinin, directly or indirectly (synergism), in the observed activity is rather limited. Additionally, no cellular toxicity was seen for the tea infusion at the highest concentrations tested.

CONCLUSION:

This study provides the first in vitro evidence of anti-HIV activity of the Artemisia annua tea infusion. We also report for the first time on the anti-HIV activity of Artemisia afra although this was not an objective of this study. These results open the way to identify new active pharmaceutical ingredients in Artemisia annua and thereby potentially reduce the cost for the production of the important antimalarial compound artemisinin.

Qinghaosu (artemisinine), Chinees kruid tegen multiresistente malariaparasiet

Ned Tijdschr Geneeskd. 1993;137:1083-5

Een aftreksel van de plant Artemisia annua wordt al in 168 voor Christus in de Chinese literatuur genoemd als werkzaam tegen hemorroïden. Vanaf 341 na Christus wordt het kruid in verschillende Chinese tekstboeken aanbevolen tegen ziekten met koorts.1

In het begin van de jaren zeventig werd het actieve beginsel geïsoleerd, in 1979 werd de structuur opgehelderd. Het bleek te gaan om een sesquiterpeen-lactonverbinding met interne peroxyde-brug (figuur). Het middel werd Qinghaosu genoemd, in het Nederlands artemisinine. Qinghao (groen kruid) is de Chinese naam voor A. annua.2 Het geslacht Artemisia met meer dan 100 soorten behoort tot de grote familie Asteraceae . Artemisinine wordt gevonden in 2 species, A. annua en A. apiacea; niet of nauwelijks in andere soorten.3 Toch werden in Europa ‘knoppen van Alst’ of ‘alsem’, blad en vruchtbeginsel van A. absinthium (wormkruid), aangewend.4 ‘In 1946 in Nieuwendam (Amsterdam-Noord) werd ik geteisterd door drie achtereenvolgende zware malaria-golven. Potten vol kinine heb ik geslikt. Niets hielp. Op advies van mijn schoonvader heb ik thee getrokken van een kruid: knoppen van Aalst. Na twee dagen was de malaria genezen en deze is nooit meer teruggekomen. Ook vele anderen heeft dit geholpen’, aldus een mij toegezonden brief.

Absint, een aftreksel van de alsemstruik, toxisch door vermenging met andere kruiden, koper- en antimoonzouten en methanol, werd in de 2e helft van de 19e eeuw populair in Frankrijk en Zwitserland, vooral in kunstenaarskringen wegens de hallucinerende werking; zie Dunnings Uitersten.5

De synthese van artemisinine in de plant is vrijwel ontrafeld; synthese in het laboratorium is mogelijk, maar vooralsnog niet goedkoper dan extractie uit de plant.

Artemisinine is in vitro en in vivo (bij proefdieren) zeer werkzaam tegen malariaparasieten. De werking berust naar alle waarschijnlijkheid op het ontstaan van vrije radicalen in de met parasieten geïnfecteerde rode cel. Deze vrije radicalen ontstaan bij de reactie van artemisinine met het door de parasiet gevormde haem.6 Ook bestaat interactie met de celmembraan, waardoor deze waarschijnlijk stijver wordt. Met de membraan van de niet geïnfecteerde rode cel kan ook een reactie optreden, maar daarvoor is een veel hogere concentratie van artemisinine vereist.7

Artemisinine is niet oplosbaar in water of olie en dus in principe alleen toe te dienen als tablet, capsule of poeder of als zetpil. Vandaar dat gezocht is naar derivaten die wel in water of olie oplosbaar zijn, zodat preparaten voor parenterale toediening kunnen worden gemaakt. In China werden artemether en artesunaat ontwikkeld. Artemether is in olie oplosbaar en wordt als intramusculair preparaat op de markt gebracht; artesunaat is in water oplosbaar en geschikt voor intraveneuze en intramusculaire toediening en is ook in tabletvorm beschikbaar.

Artemisinine en derivaten worden in de lever snel omgezet in dihydroartemisinine, een metaboliet met duidelijke antimalaria-activiteit. Dihydroartemisinine werd in China ook in beperkte mate toegepast bij patiënten.

Door de Wereldgezondheidsorganisatie (WHO) werd in samenwerking met het Walter Reed Army Institute of Medical Research arteëther ontwikkeld, een in olie oplosbaar derivaat voor intramusculair gebruik. De WHO was geïnteresseerd in deze middelen, gedwongen door de ontwikkeling van resistentie tegen verschillende middelen door de parasiet die malaria tropica veroorzaakt, Plasmodium falciparum. Arteëther werd volgens de regels die gangbaar zijn in de westerse wereld ontwikkeld en getest; de eerste onderzoeken bij gezonde vrijwilligers zijn inmiddels afgesloten en het middel kan in principe spoedig bij malariapatiënten worden toegepast.