Diabetes

Suikerziekte

Stoornis in koolhydraat- en vetstofwisseling veroorzaakt door een tekort aan insuline in de bloedvaten en de cellen.

Oorzaken

Pancreasfunctie, aanmaak van insuline in de eilandjes van Langerhans is verstoord, maar de oorzaak daarvan is onduidelijk.

erfelijke factoren spelen een rol

vetzucht bevordert de ziekte

ouderdom, slijtage van de pancreas?

Soorten

Type I: juveniele diabetes, bij jongeren, de ß-cellen in de eilandjes van Langerhans functioneren niet goed.

Type II: ouderdomsdiabetes, de meest voorkomende, gaat dikwijls samen met vetzucht. Cellen zijn minder gevoelig voor insuline, insuline wordt slecht gebruikt door het lichaam.

Kruiden, een alfabetisch overzicht

    • Allium cepa / Ui : ook schil met hoog quercetinegehalte gebruiken bvb als soep

    • Allium sativum / Knoflook

    • Arctium lappa / Grote klis*: inuline

    • Atriplex halimus / Saltbush (Maluah): zoutsmakende plant uit Negev-woestijn Israel

    • Cinnamomum / Kaneel

    • Cyamopsis tetragonoloba / Guargom: slijmstoffen

    • Cynara scolymus / Artisjok

    • Eucalyptus globulus / Eucalyptus: blad als thee, niet de etherische olie

    • Eleutherococcus senticosus / Siberische ginseng: adaptogeen

    • Galega officinalis / Galega: obsoleet

    • Geranium robertianum / Robertskruid

    • Gymnema sylvestris: tropische plant uit de wouden van India

    • Helianthus tuberosus / Aardpeer: inuline

    • Juglans regia / Walnootboom

    • Momordica charantia / Bitter melon (Karela): tropische groente, sap, extract onrijpe vrucht

    • Opuntia / Nopal of Vijgcactus: vruchten als voedsel

    • Panax ginseng / Koreaanse ginseng*: adaptogeen

    • Phaseolus vulgaris / Spercieboon

    • Polygonum aviculare / Varkensgras

    • Pterocarpus marsupium (India): flavonoïd epicatechine in schors beschermt beta-cellen

    • Stevia rebaudiana: zoetstofplant, vervanger suiker

    • Tarraxacum officinale / Paardebloem

    • Trigonella foenum-graecum / Fenegriek*: zaad

    • Vaccinium myrtillus / Blauwe bosbes

De bekendste plantenstoffen met bloedsuikerverlagende werking zijn:

glucoquininen met insuline-achtige werking o.a. in Allium cepa.

inuline en andere FOS, fructo-oligosacchariden o.a. in grote klis, aardpeer, schorseneren.

vezelstoffen / slijmstoffen o.a. in guargom, fenegriek, heemst

Aanvullende planten

vooral bedoeld om cardiovasculaire complicaties tegen te gaan, dus vooral de kruiden voor hart en bloedvaten o.a. knoflook en vooral Ginkgo biloba en andere flavonoïdplanten.

Voedingssupplementen / Oligo

chroom*: in GTF (glucose tolerantie factor), in biergist

mangaan: co-factor in glucosestofwisseling, diabetici hebben gemiddeld een lagere mangaanspiegel.

zink*: beschermend effect op ß-cellen

voedingsvezels: volkoren en fruit of groenten

Voeding en leefstijl

minder enkelvoudige suikers, minder dierlijke vetten en calorieën

meer volkoren graanproducten, meer vis, meerdere keren kleinere hoeveelheden eten.

peulvruchten (soep) en noten, ook aardnoten?

meer bewegen, vooral stevige, niet-uitputtende wandelingen 3x per week 1 uur: verbetert de efficiëntie van insuline, vermindert totaalcholesterol, verhoogt HDL.

Literatuur

Auswirkungen eines modifizierten Guar-Gummi-Praparates auf den Glukose- und Lipidspiegel bei Diabetikern und gesunden Freiwilligen. Atherosclerosis 45 (1982).

Bourret J.C. - Les nouveaux succes de la medecine par les plantes. Le diabete.

Faulds - Eucalyptus in treatment of diabetes. The Glasgow Med. J. 1920.

Huibers J. - Suikerziekte (Anckertje 57)

Lau S. - Insuline slikken in plaats van prikken? Ned. Tdschr. Phytoth. 3 (1994)

Leclerc H. - La phytothérapie hypoglycémiante. Progres med. 1935

Leclerc H. - Une plante hypoglycemiante: le Galega. Rev. de Phytoth. 1947.

Mada Z. e.a. - Glucose-lowering effect of fenugreek in non-insulin dependent diabetics. Eur. J. Clin. Nutr. 42 (1988)

Murray M. - Diabetes and Hypoglycemia (1994)

Natural Products used for Diabetes. Shapiro en Gong. J. American Pharm. Ass. 2002.

Pedersen O. e.a. - Increasing insulin receptors after exercise in patients with insulin-dependent diabetes. N. Engl. J. Med. 302 (1980)

Phytopharmaka als Antidiabetika. Prof.Ammon in Ztschr. f. Phytoth. 15 (1994)

Piotrowski - Action hypoglycemiante de l’ extrait de Bardane. Soc.de therap. 1935.

Planten als anti-diabetica: droom en werkelijkheid. Gert Laekeman. Ned. Ver. Geneeskr.

Sharma K.K. e.a. - Antihyperglycemic effect of onion: Effect on fasting blood sugar and induced hyperglycemia in man. Ind. J. Med. Res. 65 (1977)

Voeding en diabetes. Doc. en Inf. Centrum Tiense Suikerraffinaderij.

Weiss R. - Herbal Medicine (1979)

Welihinda e.a. - Effect of Momordica ch. on the glucose tolerance in maturity onset diabetes. J. Ethnopharmacol. 17 (1986)

Yamashita K. e.a. - Effects of fructo-oligosacchariden on blood glucose and serumlipides in diabetic subjects. Nutr. Res. 4 (1984).

Review meer dan 400 wetenschappelijke onderzoeken met planten

©Herboristen Opleiding ‘Dodonaeus’ / Maurice Godefridi

Systematic review of herbs and dietary supplements for glycemic control in diabetes.

Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS.Diabetes Care. 2003 Apr;26(4):1277-94.

Division for Research and Education in Complementary and Integrative Medical Therapies, Harvard Medical School, Boston, Massachusetts, USA. gyeh@caregroup.harvard.edu

OBJECTIVE: To conduct a systematic review of the published literature on the efficacy and safety of herbal therapies and vitamin/mineral supplements for glucose control in patients with diabetes. RESEARCH DESIGN AND METHODS: We conducted an electronic literature search of MEDLINE, OLDMEDLINE, Cochrane Library Database, and HealthSTAR, from database inception to May 2002, in addition to performing hand searches and consulting with experts in the field. Available clinical studies published in the English language that used human participants and examined glycemic control were included. Data were extracted in a standardized manner, and two independent investigators assessed methodological quality of randomized controlled trials using the Jadad scale.

RESULTS: A total of 108 trials examining 36 herbs (single or in combination) and 9 vitamin/mineral supplements, involving 4,565 patients with diabetes or impaired glucose tolerance, met the inclusion criteria and were analyzed. There were 58 controlled clinical trials involving individuals with diabetes or impaired glucose tolerance (42 randomized and 16 nonrandomized trials). Most studies involved patients with type 2 diabetes. Heterogeneity and the small number of studies per supplement precluded formal meta-analyses. Of these 58 trials, the direction of the evidence for improved glucose control was positive in 76% (44 of 58). Very few adverse effects were reported.

CONCLUSIONS: There is still insufficient evidence to draw definitive conclusions about the efficacy of individual herbs and supplements for diabetes; however, they appear to be generally safe. The available data suggest that several supplements may warrant further study. The best evidence for efficacy from adequately designed randomized controlled trials (RCTs) is available for Coccinia indica and American ginseng. Chromium has been the most widely studied supplement. Other supplements with positive preliminary results include Gymnema sylvestre, Aloe vera, vanadium, Momordica charantia, and nopal.

http://care.diabetesjournals.org/content/26/4/1277.long

Effects of Long-Term Treatment with Stevioside on the Type 2 Diabetic Goto-Kakizak GK) Rats – Potential as a New Antidiabetic drug.

Per Bendix Jeppesen, Søren Gregersen and Kjeld Hermansen Dept. Of Endocrinology and Metabolism C,

Aarhus Amtssygehus,

Extracts from leaves of Stevia rebaudiana Bertoni (SrB), have been used in traditional medicine in Paraguay and Brasil as treatment of diabetes. Recently, we demonstrated a direct insulinotropic effect of stevioside in vivo in isolated mouse islets and in vivo in diabetic rats.

Aims: To explore if stevioside exerts anti-hyperglycemic, glucagonostatic or anti-hypertensive effects during longterm feeding with stevioside in diabetic rats.

Methods: For 6 weeks period Goto-Kakizaki (GK) rats were given 0.025 g/kg BW/day of the glycoside stevioside (purity > 99 %) via the drinking water. The same amount of glucose as contained in the stevioside was given to the control group. The tail-blood pressure was measured every week. At week 5 an intraarterial catheter was inserted

in rats of both groups. After 6 days recovery the animals were exposed to an i.v. glucose tolerance test (2.0 g/kg BW) and blood samples were drawn througout a 180 min period.

Results: Stevioside caused a suppression of plasma glucose (incremental area under the curve (IAUC)): 985±20 (stevioside) vs 1575±21 (control) mM x 180 min, p<0.05. Corresponding to this the stevioside fed animals had an enhanced first phase insulin response compared to the control group (IAUC: 343±33 (stevioside) vs 136±24 (control) mU insulin x 30 min, p<0.05. The second phase insulin response, in both groups occurred to be increasing

during the entire observation period. The control group tended to have higher insulin output, however, not attaining statistical significance (IAUC: 4798±34 (control) vs 3776± (stevioside) mU x 150 min, p=0.38). Interestingly, stevioside concomitantly caused a suppression of the glucagon level corresponding to the first phase of the insulin response (IAUC: 2026±234 (stevioside) vs 3535±282 (control) pg/ml x 180 min, p<0.05. From week one and onwards a 7-9 % decrease in both the systolic (p<0.01) and diastolic (p<0.05) blood pressure was elucited by stevioside.

Conclusion: Stevioside normalizes first phase insulin response in diabetic rats during i.v glucose tolerance test, and possess anti-hyperglycemic, insulinotropic and glucagonostatic effects. In addition, stevioside exerted blood pressure suppression. Stevioside appears to be usefull in the treatment of type 2 diabetes and the metabolic syndrome.

Clinical Evaluation of Japanese Phytotherapy (Gosha-jinki-gan) in Diabetic Neuropathy: A Prospective Open Pilot Study

H. Reißenweber, S. Schaefer, W. Mueller-Felber*, and R. Landgraf Research Unit for Japanese Phytotherapy;

Medizinische Klinik - Innenstadt, University of Munich, Germany

Objective: Diabetic neuropathy is one of the severest and most common complications of diabetes mellitus. Direct therapeutic options are still limited. In Japan, a traditional prescription of ten East Asian medicinal herbs, Gosha-jinki-gan, has shown empirical efficacy for this indication which was confirmed in clinical trials. Pharmacological research using animal models revealed that Gosha-jinki-gan influences the metabolic situation as an

aldose reductase inhibitor, works analgetic and improves the microcirculation of peripheral nerves. We here present data of the first clinical trial conducted with a standardized phytoproduct (TJ-107) of this regimen in Europe according to ICH-GCP guidelines.

Materials and Methods: 25 diabetic patients (DM type 1 and 2, HbA1c £ 9, mean age 60.5 (±9)) complaining about a symptomatic stage of diabetic neuropathy with the leading symptoms paresthesia, numbness, or pain were enrolled in a prospective open treatment trial. Total observation period was 36 weeks with a treatment phase of 24 weeks and a follow-up phase of 8 weeks. Primary endpoints were changes in neuropathic symptoms and nerve conduction velocity (NCV). Secondary endpoints were changes in neuropathic deficits, quantitative sensory and autonomic testing, evaluation of microcirculation, Quality of Life and metabolic parameters.

Results: Descriptive statistics were applied for simple data, ANOVA for continous variables. A significant improvement of clinical symptoms by 52.5% was found applying a validated symptom score. There were no such changes for NCV. Evaluation of temperature and vibration sensation resulted in noteworthy, in part significant improvement. No clear change was observed for cardial and gastric autonomic neuropathy, and microcirculatory

testing. Quality of Life showed a trend towards improvement. After stopping the treatment, the symptoms aggravated again which was reflected in most test results after the follow-up phase.

Conclusions: In this pilot study with a limited Western study population and relatively short time range, noteworthy evidence was obtained that Gosha-jinki-gan (TJ-107) is a safe, tolerable and efficacious treatment for symptomatic stages of diabetic neuropathy. In five out of eight endpoints a remarkable or even significant improvement was demonstrated. Future results of a controlled clinical study will confirm if this herbal medication opens up anew therapeutic option for diabetic neuropathy within an international context.

The European Phytojournal Issue 2 draft www.escop.com

Herbal Supplements May Improve Glycemic Control in Diabetes Mellitus

Suksomboon N, Poolsup N, Boonkaew S, Suthisisang CC. Meta-analysis of the effect of herbal supplement on glycemic control in type 2 diabetes. J Ethnopharmacol. 2011 Oct 11;137(3):1328-1333.

More than 400 herbs are used to treat diabetes mellitus. Reviews of these herbs suggest a positive effect in improving glycemic control with a good safety profile. Noting the lack of a meta-analysis of the use of single herbs for glycemic control in type 2 diabetes, the authors performed a systematic review and meta-analysis to evaluate the effect of herbs on glycemic control in type 2 diabetes to establish its therapeutic benefit in these patients.

The authors searched MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials from their inceptions to February 2011. To be included in the meta-analysis, a study had to be a randomized, placebo-controlled trial of a single herb that assessed glycemic control in type 2 diabetes, that was of at least 8 weeks duration, and that reported glycated hemoglobin (HbA1c) levels.

From the studies, the authors recorded year of publication, country, study design, patient characteristics, sample size, outcome measures, and dropout rate. The methodological quality of each study was assessed by using the Jadad scale, with a score of at least 3 out of 5 denoting high quality. The primary and secondary outcomes were HbA1c and fasting blood glucose (FBG) levels.

The authors identified 60 randomized, controlled trials of single herbs in patients with type 2 diabetes. Of those, 23 trials of 19 individual herbs met the inclusion criteria.

Of those 23 trials, 14 were further excluded because they used totally different kinds of herbs, and the results were not poolable. The remaining nine trials (including 487 subjects) assessing the effect of cassia (Chinese cinnamon; Cinnamomum aromaticum syn. C. cassia; 3 studies), sweet potato (Ipomoea batatas; 2 studies), milk thistle (Silybum marianum; 2 studies), and fenugreek (Trigonella foenum-graecum; 2 studies) were included in the meta-analysis.

In the 3 studies of Chinese cinnamon used in 182 patients, the effect of cinnamon was no better than that of placebo. The pooled mean differences were 0.10% (95% confidence interval [CI]: -0.15% to 0.35%) for HbA1c and -1.06 mg/dL (95% CI: -9.5 mg/dL to 7.38 mg/dL) for FBG. Sweet potato improved glycemic control significantly better than placebo in 2 studies. The pooled mean differences were -0.30% (95% CI: -0.57% to -0.04%; P=0.02) for HbA1c and -10.20 mg/dL (95% CI: -15.08 mg/dL to -5.32 mg/dL; P<0.0001) for FBG. Both HbA1c and FBG were reduced significantly with milk thistle compared with placebo in 2 studies. The pooled mean differences were -1.92% (95% CI: -3.32% to -0.51%; P=0.008) for HbA1c and -38.05 mg/dL (95% CI: -66.57 mg/dL to -9.54 mg/dL; P<0.009) for FBG. With fenugreek, HbA1c decreased significantly compared with placebo. In the 2 studies, the pooled mean difference was -1.13% (95% CI: -2.14% to -0.11%; P=0.03). No effect on FBG was observed, however.

Most of the trials considered the single herb as an adjunct to antidiabetic medications except in the sweet potato trials, which included type 2 diabetes patients treated with diet only. Heterogeneity was observed in the results of the milk thistle and fenugreek studies. The methodological quality scores of the studies varied from 2 to 5 points on the Jadad scale. Of the 9 trials, 5 were rated as high quality. Most of the studies did not describe a randomization method, and most did not mention whether placebo and the single herb were indistinguishable.

In this meta-analysis, sweet potato and milk thistle significantly improved HbA1c and FBG compared with placebo, whereas fenugreek significantly improved HbA1c only. An extract of sweet potato has been shown to enhance glucose uptake and delay carbohydrate absorption. Milk thistle contains silymarin, which is known to improve insulin resistance.

Although cassia had no effect on HbA1c and FBG in this meta-analysis, it was shown to enhance glucose uptake and glycogen synthesis in earlier studies. In this meta-analysis, the "nonsignificant effect of [cassia] on glycemic control may be attributable to low baseline HbA1c value and the influence of concurrent prescribed antidiabetic drugs," state the authors.

The authors suggest that the use of sweet potato, milk thistle, and fenugreek with dietary control or medications may offer an alternative for patients who cannot achieve glycemic control. "However, given the poor quality of the available evidence and high heterogeneity of the study results for milk thistle and fenugreek, further high-quality, large trials using standardized preparation are warranted to better elucidate the effects of these herbs on glycemic control," conclude the authors.

http://www.holisticonline.com/remedies/diabetes/diabetes_herbs.htm

http://www.diabetes-diabetic-diet.com/herbs_for_diabetes.htm

http://www.itmonline.org/arts/diabherb.htm

http://care.diabetesjournals.org/content/26/4/1277.long

http://www.liebertonline.com/doi/pdfplus/10.1089/act.2009.15605?cookieSet=1

Clinical Management Series: Natural Medicines Comprehensive Database

Uittreksel uit Les conseils au comptoir pour le diabète non insulino-dépendant

Eric BECKER Préparateur en pharmacie Octobre 2008

GYMNEMA sylvestre Asclepiadaceae:

Dans les forets tropicales de l’Inde, on trouve une plante grimpante ligneuse dont la médecine ayurvédique utilise ses propriétés thérapeutiques depuis plus de 2500 ans. Au cours des années 1920, les chercheurs indiens ont confirmés les propriétés hypoglycémiantes des feuilles de Gymnema.

Des études sur les animaux ont ensuite été effectués et ont prouvé que la plante diminuait l’absorption intestinale du glucose, stimulait la production d’insuline et sensibilisait les cellules à l’action de l’insuline. La recherche moderne a isolé l’acide gymnémique ou « gymnémine » qui semble etre responsable de l’activité hypoglycémiante de la plante.

Les chercheurs indiens ont mis au point l’extrait GS4 et ont mené deux éssais cliniques sans groupe placebo. Au cours de l’un deux, ils ont comparé l’évolution d’un groupe témoin de 22 sujets souffrant de diabète de type 2 et sous médications hypoglycémiante et 25 sujets contrôles. Ils ont

reçu 400mg d’éxtraits de gymnéma par jour pendant 18 à 20mois. La majorité des sujets ont pu a la fin de cette période réduire leur médication classique et cinq ont pu l’interrompre et s’en tenir seulement à l’extrait pour réguler leur glycémie.

Plutot que les feuilles séchées, on utilise de nos jours un extrait normalisé à 24% d’acide gymnique souvent désigné sous le nom de GS4.

ANACARDIUM occidentalis, Anacardiaceae

Arbre a cime évasée d’environ 10 métres de hauteur. Les feuilles sont pérsistantes, alternes, ovales et coriaces. Les fleurs sont blanches teintées de rose, parfumées et réunies en inflorescences terminales. Les fruits possédent une coque acre et toxique abritant une amande blanche, comestible « la noix de cajou ». Ils se forment sous un pédoncule gonflé, charnu et juteux nommé « pomme de cajou »( faux fruit). Aujourd’hui largement cultivé en Afrique, aux Antilles, en Asie du sud-est, au nord-est du Brésil et en Inde. La noix de cajou est la première exportation de la Guinée-Bisseau.

L’anacardier ou « pommier cajou » est utilisé principalement pour ses vertus hypoglycémiantes.

Les macérations et décoction de feuilles et d’écorces permettent de faire diminuer la glycémie chez les diabétiques. Les propriétés ont été vérifiées scientifiquement. 80 grammes de feuilles pour 1 litre d’eau pendant 15 minutes. Filtrer après refroidissement et boire dans la journée.

IRVINGIA gabonensis,

Le manguier sauvage possède un fruit à la pulpe charnue et à noyau dur renfermant une seule graine très oléagineuse. En Afrique, les femmes s’en servent pour préparer le pain d’ODIKA. Expérimentalement, les chercheurs ont mis en évidence le pouvoir hypoglycémiant de la graine d’Irvingia en donnant 4 grammes par jour de mucilage de graine pendant quatre semaines à des diabétiques de type 2.

FICUS bengalensis,

Les racines aériennes contiennent plusieurs molécules de la famille des glucosides et des flavonoides présentant des propriétés hypoglycémiantes. L’activité du glucoside « leucopélargonidine » montre un effet hypoglycémiant et hypolipidémiant, avec une augmentation significative de la libération d’insuline. Les tanins de l’écorce vont conforter l’action du glucoside en freinant l’activité enzymatique de la dégradation des polysaccharides..

Ginseng gunstig bij diabetes via hormonale interacties

Ginseng is een van de populairste kruiden in Aziatische landen en wordt onder meer genomen door diabetici. Koreaanse onderzoekers zetten een onderzoek bij gezonde, menopauzale vrouwen op touw om de werkingsmechanismen te ontrafelen. Zij namen aan dat ginseng via hormonale effecten invloed uitoefent op het glucose- en insulinemetabolisme. Inderdaad zagen de onderzoekers na twee weken effecten op aldosteron, groeihormoon en DHEAS, naast een daling van nuchtere glucosespiegel en insulineresistentie.

De daling van aldosteron was het sterkst en kan al gedeeltelijk de effecten op glucose en insuline verklaren. Activatie van aldosteron (samen met renine en angiotensine) is een van de vele factoren in de ontwikkeling van insulineresistentie.

Verder namen groeihormoon, DHEAS en oestradiol toe bij de vrouwen die ginseng namen. Volgens een meer diepgaande analyse van de gegevens zouden toename van DHEAS en oestradiol veeleer gevolg zijn van de toename van groeihormoon. DHEAS daalt van nature tijdens veroudering tot een fractie van het oorspronkelijke niveau. Een toename is dus zeker een gunstig teken.

Het metabool syndroom treft westerse landen hard, in het bijzonder bepaalde bevolkingsgroepen zoals vrouwen na de menopauze. Minstens een derde van Amerikaanse postmenopauzale vrouwen heeft symptomen van het metabool syndroom. Verhoging van bloedglucose, bloedvetten en insulineresistentie zijn niet te enige symptomen, ook hormonale veranderingen grijpen plaats.

Lage oestradiol is bijvoorbeeld een belangrijke risicofactor. Dat toonden ook studies met hormoonsubstitutie aan, welke het risico op metabool syndroom met 36 % konden verlagen. Hormoonsubstitutie is niet meer de geschikte behandeling van menopauzale problemen wegens bijwerkingen, verhoogd optreden van kanker en afwezigheid van cardiovasculaire bescherming.

Referenties

Lee KJ, Lee SY et al. Diabetes-ameliorating effects of fermented red ginseng and causal effects on hormonal interactions: testing the hypothesis by multiple group path analysis. J Med Food. 2013 May;16(5):383-95

Wetenschappelijk onderzoek: Planten en Suikerziekte

Kempf K, Rathmann W, Herder C: Impaired glucose regulation and type 2 diabetes in children and adolescents.

Diabetes Metab Res Rev 2008, 24(6):427-437. PubMed Abstract | Publisher Full Text

American Diabetes Association: All about diabetes. [http://www.diabetes.org/about-diabetes.jsp] webcite

Yin J, Zhang H, Ye J: Traditional Chinese medicine in treatment of metabolic syndrome.

Endocr Metab Immune Disord Drug Targets 2008, 8(2):99-111. PubMed Abstract |Publisher Full Text | PubMed Central Full Text

Xiang YZ, Shang HC, Gao XM, Zhang BL: A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials.

Phytother Res 2008, 22(7):851-858. PubMed Abstract | Publisher Full Text

Yu R, Hui H, Shlomo M: Insulin Secretion and Action, Endocrinology (2nd). Humana Press; 2005::311-319.

Hui H, Dotta F, Di Mario U, Perfetti R: Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death.

J Cell Physiol 2004, 200(2):177-200. PubMed Abstract | Publisher Full Text

Modi P: Diabetes beyond insulin: review of new drugs for treatment of diabetes mellitus.

Curr Drug Discov Technol 2007, 4(1):39-47. PubMed Abstract | Publisher Full Text

Hui H, Zhao X, Perfetti R: Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes.

Diabetes Metab Res Rev 2005, 21(4):313-331. PubMed Abstract | Publisher Full Text

Garber AJ, Spann SJ: An overview of incretin clinical trials.

J Fam Pract 2008, 57(9 Suppl):S10-8. PubMed Abstract

Neustadt J, Pieczenik SR: Medication-induced mitochondrial damage and disease.

Mol Nutr Food Res 2008, 52(7):780-788. PubMed Abstract | Publisher Full Text

Kuriyan R, Rajendran R, Bantwal G, Kurpad AV: Effect of supplementation of Coccinia cordifolia extract on newly detected diabetic patients.

Diabetes Care 2008, 31(2):216-220. PubMed Abstract | Publisher Full Text

Angelova N, Kong HW, Heijden R, Yang SY, Choi YH, Kim HK, Wang M, Hankemeier , Greef J, Xu G, Verpoorte R: Recent methodology in the phytochemical analysis of ginseng.

Phytochem Anal 2008, 19(1):2-16. PubMed Abstract | Publisher Full Text

Shan JJ, Rodgers K, Lai CT, Sutherland SK: Challenges in natural health product research: The importance of standardization.

Proc West Pharmacol Soc 2007, 50:24-30. PubMed Abstract

Liu RH: Potential synergy of phytochemicals in cancer prevention: mechanism of action.

J Nutr 2004, 134(12 Suppl):3479S-3485S. PubMed Abstract | Publisher Full Text

Kawase M, Wang R, Shiomi T, Saijo R, Yagi K: Antioxidative activity of (-)-epigallocatechin-3-(3"-O-methyl)gallate isolated from fresh tea leaf and preliminary results on its biological activity.

Biosci Biotechnol Biochem 2000, 64(10):2218-2220. PubMed Abstract | Publisher Full Text

Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DTP, Yeung HW, Wong RNS:Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides.

Chin Med 2007, 2:6. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text

Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T: Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats.

Eur J Pharmacol 2008, 591(1–3):266-272. PubMed Abstract | Publisher Full Text

Kim K, Kim HY: Korean red ginseng stimulates insulin release from isolated rat pancreatic islets.

J Ethnopharmacol 2008, 120(2):190-195. PubMed Abstract | Publisher Full Text

Kim HY, Kang KS, Yamabe N, Nagai R, Yokozawa T: Protective effect of heat-processed American ginseng against diabetic renal damage in rats.

J Agric Food Chem 2007, 55(21):8491-8497. PubMed Abstract | Publisher Full Text

Chung SH, Choi CG, Park SH: Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice.

Arch Pharm Res 2001, 24(3):214-218. PubMed Abstract | Publisher Full Text

Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M, Naeem A: Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety.

Nutr Metab Cardiovasc Dis 2008, 18(1):46-56. PubMed Abstract | Publisher Full Text

Xie JT, Aung HH, Wu JA, Attel AS, Yuan CS: Effects of American ginseng berry extract on blood glucose levels in ob/ob mice.

Am J Chin Med 2002, 30(2–3):187-194. PubMed Abstract | Publisher Full Text

Xie JT, Wang CZ, Ni M, Wu JA, Mehendale SR, Aung HH, Foo A, Yuan CS: American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice.

J Food Sci 2007, 72(8):S590-594. PubMed Abstract | Publisher Full Text |PubMed Central Full Text

Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS: Anti-hyperglycemic effects of ginseng: comparison between root and berry.

Phytomedicine 2003, 10(6–7):600-605. PubMed Abstract | Publisher Full Text

Dey L, Attele AS, Yuan CS: Alternative therapies for type 2 diabetes.

Altern Med Rev 2002, 7(1):45-58. PubMed Abstract | Publisher Full Text

Vogler BK, Pittler MH, Ernst E: The efficacy of ginseng: A systematic review of randomized clinical trials.

Eur J Clin Pharmacol 1999, 55(8):567-575. PubMed Abstract | Publisher Full Text

Kimura M, Kimura I, Chem FJ: Combined potentiating effect of byakko-ka-ninjin-to, its constituents, rhizomes of Anemarrhena asphodeloides, tomosaponin A-III, and calcium on pilocarpine-induced saliva secretion in streptozocin-diabetic mice.

Biol Pharm Bull 1996, 19(7):926-931. PubMed Abstract

Ng TB, Yeung HW: Hypoglycemic constituents of Panax ginseng.

Gen Pharmacol 1985, 16(6):549-552. PubMed Abstract

Waki I, Kyo H, Yasuda M, Kimura M: Effects of a hypoglycemic component of ginseng radix on insulin biosynthesis in normal and diabetic animals.

J Pharmacobiodyn 1982, 5(8):547-554. PubMed Abstract

Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY: Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways.

Phytother Res 2009, 23(2):262-266. PubMed Abstract | Publisher Full Text

Lee WK, Kao ST, Liu IM, Cheng JT: Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats.

Horm Metab Res 2007, 39(5):347-354. PubMed Abstract | Publisher Full Text

Banz WJ, Iqbal MJ, Bollaert M, Chickris N, James B: Higginbotham DA, Peterson R, Murphy L: Ginseng modifies the diabetic phenotype and genes associated with diabetes in the male ZDF rat.

Phytomedicine 2007, 14(10):681-689. PubMed Abstract | Publisher Full Text

Wu Z, Luo JZ, Luo L: American ginseng modulates pancreatic beta cell activities.

Chin Med 2007, 2:11. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text

Lee WK, Kao ST, Liu IM, Cheng JT: Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats.

Clin Exp Pharmacol Physiol 2006, 33(1–2):27-32. PubMed Abstract | Publisher Full Text

Kim HY, Kim K: Protective effect of ginseng on cytokine-induced apoptosis in pancreatic beta-cells.

J Agric Food Chem 2007, 55(8):2816-2823. PubMed Abstract | Publisher Full Text

Xiang YZ, Shang HC, Gao XM, Zhang BL: A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials.

Phytother Res 2008, 22(7):851-858. PubMed Abstract | Publisher Full Text

efer D, Pantuso T: Panax ginseng.

Am Fam Physician 2003, 68(8):1539-1542. PubMed Abstract

Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan-Zdravkovic U, Xu Z, Vidgen E: Related Articles American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus.

Arch Intern Med 2000, 160(7):1009-1013. PubMed Abstract | Publisher Full Text

Abd El Sattar El Batran S, El-Gengaihi SE, El Shabrawy OA: Some toxicological studies of Momordica charantia L. on albino rats in normal and alloxan diabetic rats.

J Ethnopharmacol 2006, 108(2):236-242. PubMed Abstract | Publisher Full Text

Miller LG: Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions.

Arch Intern Med 1998, 158(20):2200-2211. PubMed Abstract | Publisher Full Text

McCarty MF: Does bitter melon contain an activator of AMP-activated kinase?Med Hypotheses 2004, 63(2):340-343. PubMed Abstract | Publisher Full Text

Krawinkel MB, Keding GB: Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia.Nutr Rev 2006, 64:331-337. PubMed Abstract | Publisher Full Text

Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O, Uchida M, Asakawa Y:Momordica charantia constituents and antidiabetic screening of the isolated major compounds.Chem Pharm Bull (Tokyo) 2006, 54(7):1017-1021. PubMed Abstract | Publisher Full Text

Han C, Hui Q, Wang Y: Hypoglycaemic activity of saponin fraction extracted from Momordica charantia in PEG/salt aqueous two-phase systems.Nat Prod Res 2008, 22(13):1112-1119. PubMed Abstract | Publisher Full Text

Shetty AK, Kumar GS, Sambaiah K, Salimath PV: Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats.Plant Foods Hum Nutr 2005, 60(3):109-112. PubMed Abstract | Publisher Full Text

Chao CY, Huang C: Bitter Gourd (Momordica charantia) Extract Activates Peroxisome Proliferator-Activated Receptors and Upregulates the Expression of the Acyl CoA Oxidase Gene in H4IIEC3 Hepatoma Cells.J Biomed Sci 2003, 10:782-791. PubMed Abstract

Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ: Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L).J Biomed Sci 2006, 13(6):763-772. PubMed Abstract | Publisher Full Text

Tan MJ, Ye JM, Turner N, Hohnen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE, Ye Y: Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.Chem Biol. 2008, 15(3):263-273. PubMed Abstract | Publisher Full Text

Cefalu WT, Ye J, Wang ZQ: Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans.

Endocr Metab Immune Disord Drug Targets. 2008, 8(2):76-81. Publisher Full Text

Basch E, Gabardi S, Ulbricht C: Bitter melon (Momordica charantia): a review of efficacy and safety.Am J Health Syst Pharm 2003, 60(4):356-359. PubMed Abstract | Publisher Full Text

Chen Q, Chan LL, Li ET: Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 2003, 133(4):1088-1093. PubMed Abstract | Publisher Full Text

Yu HH, Kim KJ, Cha JD: Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.J Med Food 2005, 8(4):454-461. PubMed Abstract | Publisher Full Text

Tang LQ, Wei W, Chen LM, Liu S: Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats.J Ethnopharmacol 2006, 108(1):109-115. PubMed Abstract | Publisher Full Text

Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M, Chen J: Berberine stimulates glucose transport through a mechanism distinct from insulin.Metabolism 2007, 56(3):405-412. PubMed Abstract | Publisher Full Text

Zhou JY, Zhou SW, Zhang KB, Tang JL, Guang LX, Ying Y, Xu Y, Zhang L, Li DD: Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats.Biol Pharm Bull 2008, 31(6):1169-1176. PubMed Abstract | Publisher Full Text

Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD: Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression.Metabolism 2009, 58(1):109-119. PubMed Abstract | Publisher Full Text

Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB: Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states.Diabetes 2006, 55(8):2256-2264. PubMed Abstract | Publisher Full Text

Zhou L, Wang X, Shao L, Yang Y, Shang W, Yuan G, Jiang B, Li F, Tang J, Jing H, Chen M:Berberine acutely inhibits insulin secretion from beta-cells through 3', 5'-cyclic adenosine 5'-monophosphate signaling pathway.Endocrinology 2008, 149(9):4510-4518. PubMed Abstract | Publisher Full Text

Liu WH, Hei ZQ, Nie H, Tang FT, Huang HQ, Li XJ, Deng YH, Chen SR, Guo FF, Huang WG, Chen FY, Liu PQ: Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase.Chin Med J (Engl) 2008, 121(8):706-712. PubMed Abstract | Publisher Full Text

Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM: Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action.Diabetes 2008, 57(5):1414-1418. PubMed Abstract | Publisher Full Text

Liu WH, Hei ZQ, Nie H, Tang FT, Huang HQ, Li XJ, Deng YH, Chen SR, Guo FF, Huang WG, Chen FY, Liu PQ: Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase.Chin Med J (Engl) 2008, 121(8):706-712. PubMed Abstract | Publisher Full Text

Yin J, Xing H, Ye J: Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism 2008, 57(5):712-717. PubMed Abstract | Publisher Full Text |PubMed Central Full Text

Winters WD, Huo YS, Yao DL: Inhibition of the progression of type 2 diabetes in the C57BL/6J mouse model by an anti-diabetes herbal formula. Phytother Res 2003, 17(6):591-598. PubMed Abstract | Publisher Full Text

Wang L, Higashiura K, Ura N, Miura T, Shimamoto K: Chinese medicine, Jiang-Tang-Ke-Li, improves insulin resistance by modulating muscle fiber composition and muscle tumor necrosis factor-alpha in fructose-fed rats.Hypertens Res 2003, 26(7):527-532. PubMed Abstract | Publisher Full Text

Kimura I, Nakashima N, Sugihara Y, Fu-jun C, Kimura M: The antihyperglycaemic blend effect of traditional chinese medicine byakko-ka-ninjin-to on alloxan and diabetic KK-CA(y) mice. Phytother Res 1999, 13(6):484-488. PubMed Abstract | Publisher Full Text

Yoshikawa M, Shimada H, Nishida N, Li Y, Toguchida I, Yamahara J, Matsuda H:Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem Pharm Bull (Tokyo) 1998, 46(1):113-119. PubMed Abstract

Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA: Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women.J Int Soc Sports Nutr 2006, 3:45-53. PubMed Abstract | BioMed Central Full Text |PubMed Central Full Text

Anderson RA: Chromium and polyphenols from cinnamon improve insulin sensitivity.Proc Nutr Soc 2008, 67(1):48-53. PubMed Abstract | Publisher Full Text

Dannemann K, Hecker W, Haberland H, Herbst A, Galler A, Schäfer T, Brähler E, Kiess W, Kapellen TM: Use of complementary and alternative medicine in children with type 1 diabetes mellitus – prevalence, patterns of use, and costs.Pediatr Diabetes 2008, 9(3 Pt 1):228-235. PubMed Abstract | Publisher Full Text

Maroo J, Vasu VT, Aalinkeel R, Gupta S: Glucose lowering effect of aqueous extract of Enicostemma littorale Blume in diabetes: a possible mechanism of action.J Ethnopharmacol 2002, 81(3):317-320. PubMed Abstract | Publisher Full Text

Puri D: The insulinotropic activity of a Nepalese medicinal plant Biophytum sensitivum: preliminary experimental study.J Ethnopharmacol 2001, 78(1):89-93. PubMed Abstract | Publisher Full Text

Ludvik B, Waldhausl W, Prager R, Kautzky-Willer A, Pacini G: Mode of action of ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism 2003, 52(7):875-880. PubMed Abstract | Publisher Full Text

Ludvik B, Hanefeld M, Pacini G: Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin and decreased fibrinogen levels in type 2 diabetic subjects.Diabetes Obes Metab 2008, 10(7):586-592. PubMed Abstract | Publisher Full Text

Miura T, Furuta K, Yasuda A, Iwamoto N, Kato M, Ishihara E, Ishida T, Tanigawa K:Antidiabetic effect of nitobegiku in KK-Ay diabetic mice.Am J Chin Med 2002, 30(1):81-86. PubMed Abstract | Publisher Full Text