Головной мозг

Головной мозг

[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Головно́й мозг (лат. cerebrum, др.-греч. ἐγκέφαλος) — часть центральной нервной системы подавляющего большинства хордовых, её головной конец; у позвоночных находится внутри черепа. В анатомической номенклатуре позвоночных, в том числе человека, мозг в целом чаще всего обозначается как encephalon — латинизированная форма греческого слова; изначально латинское cerebrum стало синонимом большого мозга (telencephalon).

Головной мозг состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма.

Несмотря на значительный прогресс в изучении головного мозга в последние годы, многое в его работе до сих пор остаётся загадкой. Функционирование отдельных клеток достаточно хорошо объяснено, однако понимание того, как в результате взаимодействия тысяч и миллионов нейронов мозг функционирует как целое, доступно лишь в очень упрощённом виде и требует дальнейших глубоких исследований.

[править] Головной мозг как орган позвоночных

См. также: Головной мозг человека

Головной мозг человека (фиксированный в формалине)

Головной мозг — главный отдел ЦНС. Говорить о наличии головного мозга в строгом смысле можно только применительно к позвоночным, начиная с рыб. Однако несколько вольно этот термин используют для обозначения аналогичных структур высокоорганизованных беспозвоночных — так, например, у насекомых «головным мозгом» называют иногда скопление ганглиев окологлоточного нервного кольца.[1]. При описании более примитивных организмов говорят о головных ганглиях, а не о мозге.

Вес головного мозга в процентах от массы тела составляет у современных хрящевых рыб 0,06—0,44 %, у костных рыб 0,02—0,94 %, у хвостатых земноводных 0,29—0,36 %, у бесхвостых 0,50—0,73 %[2] У млекопитающих относительные размеры головного мозга значительно больше: у крупных китообразных 0,3 %; у мелких китообразных — 1,7 %; у приматов 0,6—1,9 %. У человека отношение массы головного мозга к массе тела в среднем равно 2 %.

Наиболее крупные размеры имеет головной мозг млекопитающих отрядов китообразные, хоботные, приматы. Наиболее сложным и функциональным мозгом можно считать мозг человека.

[править] Ткани мозга

Головной мозг заключен в надежную оболочку черепа (за исключением простых организмов). Кроме того, он покрыт оболочками (лат. meninges) из соединительной ткани — твёрдой (лат. dura mater) и мягкой (лат. pia mater), между которыми расположена сосудистая, или паутинная (лат. arachnoidea) оболочка. Между оболочками и поверхностью головного и спинного мозга расположена цереброспинальная (часто её называют спинномозговая) жидкость — ликвор (лат. liquor). Цереброспинальная жидкость также содержится в желудочках головного мозга. Избыток этой жидкости называется гидроцефалией. Гидроцефалия бывает врождённой (чаще) и приобретённой.

Головной мозг высших позвоночных организмов состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Эти структуры соединены между собой нервными волокнами (проводящие пути). Часть мозга, состоящая преимущественно из клеток, называется серым веществом, из нервных волокон — белым веществом. Белый цвет — это цвет миелина, вещества, покрывающего волокна. Демиелинизация волокон приводит к тяжелым нарушениям в головном мозге (рассеянный склероз).

[править] Клетки мозга

Клетки мозга включают нейроны (клетки, генерирующие и передающие нервные импульсы) и глиальные клетки, выполняющие важные дополнительные функции. (Можно считать, что нейроны являются паренхимой мозга, а глиальные клетки стромой). Нейроны делятся на возбуждающие (то есть активирующие разряды других нейронов) и тормозные (препятствующие возбуждению других нейронов).

Коммуникация между нейронами происходит посредством синаптической передачи. Каждый нейрон имеет длинный отросток, называемый аксоном, по которому он передает импульсы другим нейронам. Аксон разветвляется и в месте контакта с другими нейронами образует синапсы — на теле нейронов и дендритах (коротких отростках). Значительно реже встречаются аксо-аксональные и дендро-дендритические синапсы. Таким образом, один нейрон принимает сигналы от многих нейронов и в свою очередь посылает импульсы ко многим другим.

В большинстве синапсов передача сигнала осуществляется химическим путем — посредством нейромедиаторов. Медиаторы действуют на постсинаптические клетки, связываясь с мембранными рецепторами, для которых они являются специфическими лигандами. Рецепторы могут быть лиганд-зависимыми ионными каналами, их называют ещё ионотропными рецепторами, или могут быть связаны с системами внутриклеточных вторичных мессенджеров (такие рецепторы называют метаботропными). Токи ионотропных рецепторов непосредственно изменяют заряд клеточной мембраны, что ведёт к её возбуждению или торможению. Примерами ионотропных рецепторов могут служить рецепторы к ГАМК (тормозной, представляет собой хлоридный канал), или глутамату (возбуждающий, натриевый канал). Примеры метаботропных рецепторов — мускариновый рецептор к ацетилхолину, рецепторы к норадреналину, эндорфинам, серотонину. Поскольку действие ионотропных рецепторов непосредственно ведёт к торможению или возбуждению, их эффекты развиваются быстрее, чем в случае метаботропных рецепторов (1—2 миллисекунды против 50 миллисекунд — нескольких минут).

Форма и размеры нейронов головного мозга очень разнообразны, в каждом его отделе разные типы клеток. Различают принципиальные нейроны, аксоны которых передают импульсы другим отделам, и интернейроны, осуществляющие коммуникацию внутри каждого отдела. Примерами принципиальных нейронов являются пирамидные клетки коры больших полушарий и клетки Пуркинье мозжечка. Примерами интернейронов являются корзиночные клетки коры.

Активность нейронов в некоторых отделах головного мозга может модулироваться также гормонами.

До сих пор было известно, что нервные клетки восстанавливаются только у животных. Однако недавно ученые обнаружили, что в отделе мозга человека, который отвечает за обоняние, из клеток-предшественниц образуются зрелые нейроны. Однажды они смогут помочь «починить» травмированный мозг.http://www.newsru.com/world/16feb2007/neurons_brain.html Стволовые клетки, находящиеся в мозге, перестают делиться, происходит реактивация некоторых участков хромосом, начинают формироваться специфические для нейронов структуры и соединения. С этого момента клетку можно считать полноценным нейроном. На сегодняшний момент известны только 2 области активного прироста нейронов. Одна из них — зона памяти. В другую входит зона мозга, ответственная за движения. Этим объясняется частичное и полное восстановление со временем соответствующих функций после повреждения данного участка мозга.

Основная статья: Кровоснабжение головного мозга

Функционирование нейронов мозга требует значительных затрат энергии, которую мозг получает через сеть кровоснабжения. Головной мозг снабжается кровью из бассейна трёх крупных артерий — двух внутренних сонных артерий (лат. a. carotis interna) и основной артерии (лат. a. basilaris). В полости черепа внутренняя сонная артерия имеет продолжение в виде передней и средней мозговых артерий (лат. aa. cerebri anterior et media). Основная артерия находится на вентральной поверхности ствола мозга и образована слиянием правой и левой позвоночных артерий. Её ветвями являются задние мозговые артерии. Перечисленные три пары артерий (передняя, средняя, задняя), анастомозируя между собой, образуют артериальный (виллизиев) круг. Для этого передние мозговые артерии соединяются между собой передней соединительной артерией (лат. a. communicans anterior), а между внутренней сонной (или, иногда средней мозговой) и задней мозговыми артериями, с каждой стороны, имеется задняя соединительная артерия (лат. aa.communicans posterior). Отсутствие анастомозов между артериями становится заметным при развитии сосудистой патологии (инсультов), когда из-за отсутствия замкнутого круга кровоснабжения область поражения увеличивается. Кроме того, возможны многочисленные варианты строения (разомкнутый круг, нетипичное деление сосудов с формированием трифуркации и др.). Если активность нейронов в одном из отделов усиливается, увеличивается и кровоснабжение этой области. Регистрировать изменения функциональной активности отдельных участков головного мозга позволяют такие методы неинвазивной нейровизуализации как функциональная магнитно-резонансная томография и позитрон-эмиссионная томография.

Между кровью и тканями мозга имеется гематоэнцефалический барьер, который обеспечивает избирательную проницаемость веществ, находящиихся в сосудистом русле, в церебральную ткань. В некоторых участках мозга этот барьер отсутствует (гипоталамическая область) или отличается от других частей, что связано с наличием специфических рецепторов и нейроэндокринных образований. Этот барьер защищает мозг от многих видов инфекции. В то же время, многие лекарственные препараты, эффективные в других органах, не могут проникнуть в мозг через барьер.

[править] Функции

По мнению большинства учёных, функции мозга включают обработку сенсорной информации, поступающей от органов чувств, планирование, принятие решений, координацию, управление движениями, положительные и отрицательные эмоции, внимание, память. Мозг человека выполняет высшую функцию — мышление. Одной из функций мозга человека является восприятие и генерация речи.

[править] Отделы мозга

Основная статья: Структуры мозга

Основные отделы головного мозга человека

Полостью ромбовидного мозга является IV желудочек (на дне его имеются отверстия, которые соединяют его с другими тремя желудочками мозга, а также с субарахноидальным пространством).

Поток сигналов к головному мозгу и от него осуществляется через спинной мозг, управляющий телом, и через черепномозговые нервы. Сенсорные (или афферентные) сигналы поступают от органов чувств в подкорковые (то есть предшествующие коре полушарий) ядра, затем в таламус, а оттуда в высший отдел — кору больших полушарий.

Кора состоит из двух полушарий, соединённых между собой пучком нервных волокон — мозолистым телом (corpus callosum). Левое полушарие ответственно за правую половину тела, правое — за левую. У человека правое и левое полушарие имеют разные функции.

Зрительные сигналы поступают в зрительный отдел коры (в затылочной доле), тактильные в соматосенсорную кору (в теменной доле), обонятельные — в обонятельную кору и т. д. В ассоциативных же областях коры происходит интеграция сенсорных сигналов разных типов (модальностей).

Моторные области коры (первичная моторная кора и другие области лобных долей) ответственны за регуляцию движений.

Префронтальная кора (развитая у приматов) предположительно отвечает за мыслительные функции.

Области коры взаимодействуют между собой и с подкорковыми структурами — таламусом, базальными ганглиями, ядрами ствола мозга и спинным мозгом. Каждая из этих структур, хоть и более низкая по иерархии, выполняет важную функцию, а также может действовать автономно. Так, в управлении движениями задействованы базальные ганглии, красное ядро ствола мозга, мозжечок и другие структуры, в эмоциях — амигдала, в управлении вниманием — ретикулярная формация, в краткосрочной памяти — гиппокамп.

С одной стороны, существует локализация функций в отделах головного мозга, с другой — все они соединены в единую сеть.

[править] Пластичность

Мозг обладает свойством пластичности. Если поражен один из его отделов, другие отделы через некоторое время могут компенсировать его функцию. Пластичность мозга играет роль и в обучении новым навыкам.

[править] Эмбриональное развитие

Мозг четырёхнедельного эмбриона

Эмбриональное развитие мозга является одним из ключей к пониманию его строения и функций.

Головной мозг развивается из ростральной части нервной трубки. Бо́льшая часть головного мозга (95 %) является производной крыловидной пластинки.

Эмбриогенез мозга проходит через несколько стадий.

В процессе формирования второй стадии (с третьей по седьмую недели развития) головной мозг человека приобретает три изгиба: среднемозговой, шейный и мостовой. Сначала одновременно и в одном направлении формируются среднемозговой и мостовый изгибы, потом — и в противоположном направлении — шейный. В итоге линейный мозг зигзагообразно «складывается».

При развитии мозга человека можно отметить определенное сходство филогенеза и онтогенеза. В процессе эволюции животного мира первым сформировался конечный мозг, а затем - средний мозг. Передний мозг является эволюционно более новым образованием головного мозга. Также и во внутриутробном развитии ребенка сначала формируется задний мозг как самая эволюционно древняя часть мозга, а затем - средний мозг и потом - передний мозг. После рождения с младенческого возраста до совершеннолетия происходит организационное усложнение нейронных связей в мозге.

[править] Методы исследования

[править] Абляции

Одним из старейших методов исследования мозга является методика абляций, которая состоит в том, что один из отделов мозга удаляется, и ученые наблюдают за изменениями, к которым приводит такая операция.

Не всякую область мозга можно удалить, не убив организм. Так, многие отделы ствола мозга ответственны за жизненно важные функции, такие, как дыхание, и их поражение может вызвать немедленную смерть. Тем не менее, поражение многих отделов, хотя и отражается на жизнеспособности организма, несмертельно. Это, например, относится к областям коры больших полушарий. Обширный инсульт вызывает паралич или потерю речи, но организм продолжает жить. Вегетативное состояние, при котором большая часть мозга мертва, можно поддерживать за счет искусственного питания.

Исследования с применением аблаций имеют давнюю историю и продолжаются в настоящее время. Если ученые прошлого удаляли области мозга хирургическим путем, то современные исследователи используют токсические вещества, избирательно поражающие ткани мозга (например, клетки в определённой области, но не проходящие через неё нервные волокна).

После удаления отдела мозга какие-то функции теряются, а какие-то сохраняются. Например, кошка, мозг которой рассечён выше таламуса, сохраняет многие позные реакции и спинномозговые рефлексы. Животное, мозг которого рассечён на уровне ствола мозга (децеребрированное), поддерживает тонус мышц-разгибателей, но утрачивает позные рефлексы.

Проводятся наблюдения и за людьми с поражениями мозговых структур. Так, богатую информацию для исследователей дали случаи огнестрельных ранений головы во время Второй мировой войны. Также проводятся исследования больных, поражённых инсультом, и с поражениями мозга в результате травмы.

[править] Транскраниальная магнитная стимуляция

Транскраниальная магнитная стимуляция, — метод, позволяющий неинвазивно стимулировать кору головного мозга при помощи коротких магнитных импульсов. ТМС не сопряжена с болевыми ощущениями и поэтому может применяться в качестве диагностической процедуры в амбулаторных условиях. Магнитный импульс, генерируемый ТМС, представляет собой быстро меняющееся во времени магнитное поле, которое продуцируется вокруг электромагнитной катушки во время прохождения в ней тока высокого напряжения после разряда мощного конденсатора (магнитного стимулятора). Магнитные стимуляторы, используемые сегодня в медицине, способны генерировать магнитное поле интенсивностью до 2 Тесла, что позволяет стимулировать элементы коры головного мозга на глубине до 2 см. В зависимости от конфигурации электромагнитной катушки, ТМС может активировать различные по площади участки коры, то есть быть либо 1) фокальным, что дает возможность избирательно стимулировать небольшие области коры, либо 2) диффузным, что позволяет одновременно стимулировать разные отделы коры.

При стимуляции моторной зоны коры головного мозга ТМС вызывает сокращение определенных периферических мышц в соответствии с их топографическим представительством в коре. Метод позволяет производить оценку возбудимости моторной системы головного мозга, включая ее возбуждающие и тормозные компоненты. ТМС используется при лечении заболеваний мозга, таких как синдром Альцгеймера, изучении слепоты, глухоты, эпилепсии и т. п.

[править] Электрофизиология

Электрофизиологи регистрируют электрическую активность мозга — с помощью тонких электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии (методики отведения потенциалов мозга с поверхности головы).

Тонкий электрод может быть сделан из металла (покрытого изоляционным материалом, обнажающим лишь острый кончик) или из стекла. Стеклянный микроэлектрод представляет собой тонкую трубочку, заполненную внутри солевым раствором. Электрод может быть настолько тонок, что проникает внутрь клетки и позволяет записывать внутриклеточные потенциалы. Другой способ регистрации активности нейронов — внеклеточный.

В некоторых случаях тонкие электроды (от одного до нескольких сотен) вживляются в мозг, и исследователи регистрируют активность продолжительное время. В других случаях электрод вводится в мозг только на время эксперимента, а по окончании записи извлекается.

С помощью тонкого электрода можно регистрировать как активность отдельных нейронов, так и локальные потенциалы (local field potentials), образующиеся в результате активности многих сотен нейронов. С помощью ЭЭГ электродов, а также поверхностных электродов, накладываемых непосредственно на мозг, можно регистрировать только глобальную активность большого количества нейронов. Полагают, что регистрируемая таким образом активность складывается как из нейронных потенциалов действия (то есть нейронных импульсов), так и подпороговых деполяризаций и гиперполяризаций.

При анализе потенциалов мозга часто производят их спектральный анализ, причём разные компоненты спектра имеют разные названия: дельта (0,5—4 Гц), тета 1 (4—6 Гц), тета 2 (6—8 Гц), альфа (8—13 Гц), бета 1 (13—20 Гц), бета 2 (20—40 Гц), гамма-волны (включает частоту бета 2 ритма и выше).

[править] Электрическая стимуляция

Одним из методов изучения функций мозга является электрическая стимуляция отдельных областей. С помощью этого метода был, например, исследован «моторный гомункулус» — было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение руки, стимулируя другие точки — движения ног и т. д. Полученную таким образом карту и называют гомункулусом. Разные части тела представлены различающимися по размеру участками коры мозга. Поэтому у гомункулуса большое лицо, большие пальцы и ладони, но маленькое туловище и ноги.

Если же стимулировать сенсорные области мозга, то можно вызвать ощущения. Это было показано как на человеке (в знаменитых опытах Пенфилда), так и на животных.

Применяется электрическая стимуляция и в медицине — от электрошока, показанного во многих кинофильмах об ужасах психиатрических клиник, до стимуляции структур в глубине мозга, ставшей популярным методом лечения болезни Паркинсона.

[править] Другие методики

Для исследования анатомических структур головного мозга применяются рентгеновская КТ и МРТ. Также при анатомо-функциональных исследованиях головного мозга применяются ПЭТ, однофотонная эмиссионная компьютерная томография (ОФЭКТ), функциональная МРТ. Возможна визуализация структур головного мозга методом ультразвуковой диагностики (УЗИ) при наличии ультразвукового «окна» — дефекта черепных костей, например, большой родничок у детей раннего возраста.

[править] Поражения и заболевания

Изучение и лечение поражений и заболеваний мозга относится к ведению биологии (нейрофизиология) и медицины (психиатрия, неврология, нейрохирургия и психологии).

Воспаление мозговых оболочек называется менингитом (соответственно трём оболочкам — пахименингит, лептоменингит и арахноидит).

Ишемическое или геморрагическое повреждение вещества головного мозга называется инсультом.

[править] Интересные факты

Вес головного мозга взрослого человека в среднем равен одной пятидесятой части от общего веса тела. При этом мозг человека потребляет одну пятую циркулирующей крови (т.е. одну пятую кислорода), одну пятую часть поступающей в организм глюкозы.

[править] См. также

[править] Примечания

[править] Ссылки

Как устроен мозг человека

Мозг человека – самый сложный биологический механизм, созданный природой. Он имеет огромный потенциал, который наверное никогда не будет раскрыт в полной мере. Загадочная жизнь серого вещества – это огромное белое пятно на карте человеческих знаний. Как устроен мозг, как он работает – ни один житель земли не сможет дать полный и ясный ответ на эти вопросы.

В мозге загадочно всё: начиная с того, как он возник на голубой планете и заканчивая его связями с тонким миром Вселенной, непосредственно воздействующих на глубины подсознания человека. Эти загадки будоражат воображение, подстёгивают людей к поиску новых и новых нетрадиционных методов изучения мозгового вещества.

Так уж получилось, что этот совершеннейший механизм вынужден изучать сам себя, но процесс познания, к сожалению, идёт не очень успешно. Слишком сложны, непонятны, непохожи друг на друга и многообразны все те процессы, которые происходят в сером веществе. Их отражения ежесекундно находят себя во внешнем мире, давая людям возможность жить интересной, полноценной жизнью, познавать окружающую действительность и восхищаться её единством и борьбой противоположностей.

В человеческом организме мозг занимает привилегированное положение. От внешнего мира его нежнейшие ткани защищены черепной коробкой, внутри – спинномозговая жидкость надёжно оберегает от сотрясений. Составляя всего два процента от общего веса тела, этот, испещрённый сотнями тысяч кровеносных сосудов орган поглощает двадцать процентов, получаемого нашими лёгкими кислорода.

В экстремальных условиях, когда организм голодает, мозг забирает подавляющую долю питательных веществ. При потере веса тела на пятьдесят процентов, он теряет всего пятнадцать процентов.

Сверху мозг покрыт тонким серым слоем с бороздами и извилинами. Это нервная ткань, которую называют корой головного мозга. Её толщина в разных частях больших полушарий колеблется от 1,3мм до 4,5 мм. Состоит она из четырнадцати-шестнадцати миллиардов нейронов, основного функционального элемента нервной системы.

Именно здесь находится мыслящий центр с прямыми и обратными связями, которые осуществляются через вертикальные пучки волокон. Информация поступает от органов чувств к коре посредством нервных импульсов и химических сигналов. После обработки, она, в виде команд, отсылается обратно и служит руководством к действию для различных участков человеческого тела.

Основная масса мозга (около 70%) приходится на большие полушария. Они симметричны и соединены между собой мозолистым телом (пучком отростков нейронов), которое обеспечивает обмен информации между ними.

Полушария состоят из лобной, височной, теменной и затылочной долей. В лобных долях – центры, регулирующие двигательную активность, в теменных долях – зоны телесных ощущений. Височные доли отвечают за слух, центры речи, память, а затылочные преобразуют лучи света, попадающие на сетчатку глаза, в зрительные ощущения.

Под корой лежат мозговые ядра, состоящие из скопления нейронов, например гипоталамус и таламус. Гипоталамус – маленький участок мозга, который контролирует гомеостатические функции организма. Таламус отвечает за бодрствование и внимание.

За положение головы, туловища и конечностей, то есть за то, чтобы человек комфортно чувствовал себя, стоя вертикально на земле, отвечает мозжечок, который прячется под затылочными долями больших полушарий. Он также играет определяющую роль в формировании различных навыков, необходимых для повседневной жизни.

Средний вес мозга взрослого человека полтора килограмма. Попадаются отдельные экземпляры серого вещества, которые весят два килограмма. Но большие объём и масса отнюдь не являются признаками незаурядного ума и мощного интеллекта. Здесь действую совсем другие критерии, которые ещё практически не изучены.

Мозг, вообще, такой биологический механизм, который очень трудно поддаётся изучению. Слишком уж он сложен и загадочен, чтобы, вот так сразу, открыть пилигримам в Страну Сознания все свои тайны.

Головной мозг на Викискладе?

Полушария мозга

К примеру, левое и правое полушария – это как бы два мозга в одной черепной коробке. Каждое из них ведает своими делами, но в то же время помогает коллеге. Левое занимается логическим, абстрактным мышлением, правое – конкретным, образным.

Если управление психикой на себя возьмёт левое полушарие, то настроение счастливца улучшится. Он станет приветливым, оптимистичным, мягким и жизнерадостным. Но если доминировать начнёт правое, то «суши вёсла». Депрессия, раздражительность, вспышки гнева, агрессия – обычное дело в этом случае.

Интересно также то, что специализация полушарий у мужчин гораздо более выражена, чем у прекрасного пола. Уже к шести годам у мальчиков правое полушарие полностью берёт на себя, отведённые ему функции. А вот у девочек оно остаётся более пластичным ещё долгое время. Практически на протяжении всей жизни, у женщин, способность к пространственному восприятию окружающего мира в равной мере свойственна обоим половинам мозга.

Такая универсальная специфика может сыграть позитивную роль при физической травме одного из полушарий. Второе полушарие спокойно возьмёт на себя выполнение утраченных функций своего собрата. Так что мужчинам остаётся только завидовать.

Огромный интерес при изучении работы мозга уделяется чувствам, мыслям, эмоциям, которые во всём своём огромном многообразии свойственны только венцу природы, то есть нам с вами. Животные, хотя тоже имеют мозговое вещество, но с человеком и рядом не стояли.

Духовная жизнь – это следствие работы мозга, которая представляет из себя чисто физические и химические процессы или что-то другое, таинственное и непонятное? Этот вопрос всегда волновал людей, но ответа на него до сих пор нет.

Ещё в XIX веке ректор Киевской духовной семинарии архимандрит Борис изложил свои взгляды по этому вопросу в сочинении «О невозможности чисто физиологического объяснения душевной жизни человека». Высокопоставленный служитель православной церкви, соглашаясь с тем, что душевная жизнь – это работа мозга, в то же время утверждал, что психические явления имеют своё подлинное бытие вне головного мозга. А где же тогда? «Сие нам неизвестно, так как является божьим откровением».

Объективности ради надо сказать, что люди науки во многом соглашаются со слугой божьим. К примеру английский физиолог Ч. Шеррингтон считал, что мысль рождается вне материи, но возникает в головах людей, таким образом вводя их в заблуждение, что они сами произвели её на свет.

А вот австралийский анатом Ф. Галлем попытался объяснить эту загадку с материалистической точки зрения. Он утверждал, что наша духовная жизнь воспроизводится в коре головного мозга. Впрочем ни к чему хорошему такая постановка вопроса не привела. Окунувшись с головой в изучение физиологических процессов, пытаясь притянуть к ним духовные богатства человека, сей учёный муж доработался до того, что создал френологию – науку, согласно которой по конфигурации черепа можно судить о характере людей. Впоследствии эту гипотезу взяли на вооружение расисты всех мастей и оттенков.

Мозг не чувствителен к боли. Его можно раздражать электрическим током, резать скальпелем – человек это не почувствует. Почему же такая рациональная и практичная природа не позаботилась о важнейшей защитной функции для самого главного органа нашего тела? Видимо потому, что серое вещество не подлежит восстановлению. Если уж оно повреждено, то ничего исправить уже нельзя.

Но нет худа без добра. Отсутствие болевого эффекта позволило исследователям серого вещества использовать в своей работе электричество. Вживляя тончайшие электроды в различные части мозга, они получили возможность узнать, как работают и за что отвечают отдельные его участки.

Если прикоснуться электродом к нейронам височной области коры головного мозга, то испытуемый может разразиться такими воспоминаниями (скажем из далёкого детства), которые были бы просто невозможны при обычных условиях. Раздражение гипоталамуса вызовет агрессивность, а если вживить электрод в ретикулярную формацию, то можно управлять страхом.

Мозгу свойственно помнить о потерянных органах. Человек теряет руку, после этого проходят годы, а отнятая конечность продолжает «жить» и непереносимо «болеть». Такие боли называются фантомными и хорошо известны врачам. Кстати, как раз вживление электродов позволяет избавиться от этого неприятного фактора навсегда.

Вот так, в общих чертах, устроен мозг человека. В заключении хочется сказать несколько слов о довольно странных вещах, которые, хоть и очень редко, но наблюдаются у отдельных индивидуумов. Это отсутствие мозгового вещества. При вскрытие у такого человека в черепной коробке находят вместо нейронов и глиальных клеток обыкновенную воду.

Так немецкий патологоанатом Иоахим Гофман при вскрытии трупа больного, болевшего при жизни расстройством психики, обнаружил в его голове вместо привычной картины жидкую массу. Маститый эскулап был потрясён до глубины души, но объяснить этот феномен никак не смог.

А вот ещё пример. Приехавший домой на каникулы английский студент обратился в местную больницу с жалобой на сильную головную боль. Врачи долго не могли определить причину плохого состояния пациента, но после рентгеновского снимка мозга пришли в ужас. У этого молодого человека серое вещество напрочь отсутствовало: вместо него плескалась жидкость. Интересно то, что юноша вёл себя вполне адекватно, а в университете был на хорошем счету и учился вполне успешно.

Ни для кого не является тайной, что при вскрытии черепа «вождя мирового пролетариата» господина Ульянова В. И. (Ленина), российские светила от медицины также серое вещество в его голове не обнаружили. Вместо миллиардов и миллиардов нервных клеток в голове террориста-большевика находилась вода.

Человеческий мозг – это совершеннейший, идеально отлаженный биологический механизм. В нём нет ничего лишнего, зато нужное и даже необходимое современные люди используют всего на 10%. Целых 90% серого вещества оказывается не востребованным на протяжении всей жизни. Огромное количество нейронов так никогда и не включается в работу, и не приносит пользу человеку.

В чём же заключается эта польза? Тут однозначного ответа нет. Может это блестящая интуиция, может телепортация. Идеальную память, духовное совершенство, вселенские знания тоже нельзя исключить. Если всё это лежит совсем рядом, под черепной коробкой, то нужно работать и работать над собой, чтобы разбудить те спящие необыкновенные силы, которые кардинально могут изменить жизнь каждого из нас, а значит и всего человечества в целом.

Статью написал ridar-shakin

Головной мозг -

Головной мозг, encephalon, помещается в полости черепа и имеет форму, в общих чертах соответствующую внутренним очертаниям черепной полости. Его верхнелатеральная, или дорсальная, поверхность сообразно своду черепа выпукла, а нижняя, или основание мозга, более или менее уплощена и неровна.

В головном мозге можно различить три крупные части: большой мозг (cerebrum), мозжечок (cerebellum) и мозговой ствол (truncus encephalicus).

Наибольшую часть всего головного мозга занимают полушария большого мозга, за ними по величине следует мозжечок, остальную, сравнительно небольшую, часть составляет мозговой ствол. Верхнелатеральная поверхность полушарий большого мозга. Оба полушария отделяются друг от друга щелью, fissura longitudinalis cerebri, идущей в сагиттальном направлении. В глубине продольной щели полушария связаны между собой спайкой - мозолистым телом, corpus callosum, и другими лежащими под ним образованиями. Спереди от мозолистого тела продольная щель сквозная, а сзади она переходит в поперечную щель мозга, fissura transversa cerebri, отделяющую задние части полушарий от лежащего под ними мозжечка.

Нижняя поверхность полушарий большого мозга. Со стороны нижней поверхности мозга, facies inferior cerebri, видна не только нижняя сторона полушарий большого мозга и мозжечка, но и вся нижняя поверхность мозгового ствола, а также отходящие от мозга нервы.

Передний отдел нижней поверхности головного мозга представлен лобными долями полушарий. На нижней поверхности лобных долей замечаются обонятельные луковицы, bulbi olfactorii, к которым из полости носа через отверстия lamina cribrosa решетчатой кости подходят тонкие нервные нити, fila olfactoria, образующие в своей совокупности I пару черепных нервов - обонятельные нервы, nn. olfactorii. Обыкновенно при вынимании мозга из черепа эти нити отрываются от bulbus olfactorius. Обонятельные луковицы продолжаются кзади в обонятельные тракты, tractus olfactorii, оканчивающиеся каждый двумя корешками, между которыми находится возвышение, называемое trigonum olfactorium. Непосредственно сзади последнего на той и другой стороне находится переднее продырявленное вещество, substantia perforata anterior, названное так по причине наличия здесь маленьких дырочек, через которые проходят в мозговое вещество сосуды.

Посередине между обоими передними продырявленными пространствами лежит зрительный перекрест, chiasma opticum, имеющий форму буквы «X». От верхней поверхности хиазмы отходит тоненькая пластинка серого цвета, lamina terminalis, идущая в глубь fissura longitudinalis cerebri. Сзади зрительного перекрестка помещается серый бугор, tuber cinereum; верхушка его вытянута в узкую трубку, так называемую воронку, infundibulum, к которой подвешен расположенный в турецком седле гипофиз, hypophysis cerebri. Позади серого бугра находятся два шарообразных, белого цвета возвышения - сосцевидные тела, corpora mamillaria. За ними лежит довольно глубокая межножковая ямка, fossa interpeduncularis, ограниченная с боков двумя толстыми валиками, сходящимися кзади и называемыми ножками мозга, pedunculi cerebri. Дно ямки пронизано отверстиями для сосудов, а потому носит название заднего продырявленного вещества, substantia perforata posterior. Рядом с этим веществом в борозде медиального края мозговой ножки на той и другой стороне выходит III параглазодвигательный нерв, n. oculomotoris. Сбоку ножек мозга виден самый тонкий из черепных нервов - блоковый нерв, п. trochlearis - IV пара, который, однако, отходит не на основании мозга, а с его дорсальной стороны, из так называемого верхнего мозгового паруса. Позади ножек мозга находится толстый поперечный вал - мост, pons, который, суживаясь с боков, погружается в мозжечок. Боковые части моста, ближайшие к мозжечку, носят название средних ножек мозжечка, pedunculi cerebellares medii; на границе между ними и собственно мостом выходит на той и другой стороне V пара - тройничный нерв, n. trigeminus.

Позади моста лежит продолговатый мозг, medulla oblongata; между ним и задним краем моста по бокам средней линии видно начало VI пары - отводящего нерва, n.abducens; еще далее вбок у заднего края средних ножек мозжечка выходят рядом на той и другой стороне еще два нерва: VII - пара - лицевой нерв n. facialis, и VIII пара - n. vestibulocochlearis. Между пирамидой и оливой продолговатого мозга выходят корешки XII пары - подъязычного нерва, n. hypoglossus. Корешки IX, X и XI пар - n. glossopharyngeus, n. vagus и n. accessorius (верхняя часть) - выходят из бороздки позади оливы. Нижние волокна XI пары отходят уже от спинного мозга в шейной его части.

"Человеческие" признаки строения мозга, т. е. специфические черты строения его, отличающие человека от животных.

Подводя итоги, можно сказать, что специфическими чертами строения мозга человека, отличающими его от мозга самых высокоразвитых животных, является максимальное преобладание молодых частей центральной нервной системы над старыми: головного мозга над спинным, плаща над стволом, новой коры над старой, поверхностных слоев мозговой коры над глубокими.

Средний мозг -

Средний мозг, mesencephalon, развивается в процессе филогенеза под преимущественным влиянием зрительного рецептора, поэтому важнейшие его образования имеют отношение к иннервации глаза. Здесь же образовались центры слуха, которые вместе с центрами зрения в дальнейшем разрослись в виде четырех холмиков крыши среднего мозга.

С появлением у высших животных и человека коркового конца слухового и зрительного анализаторов в коре переднего мозга слуховые и зрительные центры среднего мозга сами попали в подчиненное положение и стали промежуточными, подкорковыми. С развитием у высших млекопитающих и человека переднего мозга через средний мозг стали проходить проводящие пути, связывающие кору конечного мозга со спинным (ножки мозга). В результате в среднем мозге человека имеются:

Соответственно этому средний мозг, являющийся у человека наименьшим и наиболее просто устроенным отделом головного мозга, имеет две основные части: крышу, где располагаются подкорковые центры слуха и зрения, и ножки мозга, где преимущественно проходят проводящие пути.

На поперечном разрезе среднего мозга различают три основные части:

Соответственно развитию среднего мозга под влиянием зрительного рецептора в нем заложены различные ядра, имеющие отношение к иннервации глаза. У низших позвоночных верхнее двухолмие служит главным местом окончания зрительного нерва и является главным зрительным центром. У млекопитающих и у человека с переносом зрительных центров в передний мозг остающаяся связь зрительного нерва с верхним холмиком имеет значение только для рефлексов. В ядре нижнего холмика, а также в медиальном коленчатом теле оканчиваются волокна слуховой петли (lemniscus lateralis). Крыша среднего мозга имеет двустороннюю связь со спинным мозгом - tractus spinotectalis и tractus tectobulbaris et tectospinalis. Последние после перекреста в покрышке идут к мышечным ядрам в продолговатом и спинном мозге. Это так называемый зрительно-звуковой рефлекторный путь, о котором говорилось при описании спинного мозга.

Таким образом, пластинку крыши среднего мозга можно рассматривать как рефлекторный центр для различного рода движений, возникающих главным образом под влиянием зрительных и слуховых раздражений.

Водопровод мозга окружен центральным серым веществом, имеющим по своей функции отношение к вегетативной системе. В нем, под вентральной стенкой водопровода, в покрышке ножки мозга заложены ядра двух двигательных черепных нервов - n. oculomotorius (III пара) на уровне верхнего двухолмия и n. trochlearis (IV пара) на уровне нижнего двухолмия.

Ядро глазодвигательного нерва состоит из нескольких отделов соответственно иннервации нескольких мышц глазного яблока. Медиально и кзади от него помещается еще небольшое, тоже парное, вегетативное добавочное ядро, nucleus accessories, и непарное срединное ядро.

Добавочное ядро и непарное срединное ядро иннервируют непроизвольные мышцы глаза, m. ciliaris и m. sphincter pupillae. Эта часть глазодвигательного нерва относится к парасимпатической системе. Выше (ростральнее) ядра глазодвигательного нерва в покрышке ножки мозга располагается ядро медиального продольного пучка. Латерально от водопровода мозга находится ядро среднемозгового тракта тройничного нерва, nucleus mesencephalicus n. trigemini.

Ножки мозга делятся на вентральную часть, или основание ножки мозга, basis pedunculi cerebralis, и покрышку, tegmentum. Границей между ними служит черное вещество, substantia nigra, обязанное своим цветом содержащемуся в составляющих его нервных клетках черному пигменту - меланину. Покрышка среднего мозга, tegmentum mesencephali, - часть среднего мозга, расположенная между его крышей и черным веществом (substantia nigra) ножек мозга. От нее отходит tractus tegmentalis centralis - центральный покрышечный путь - проекционный нисходящий нервный путь, расположенный в центральной части покрышки среднего мозга. Он содержит волокна, идущие от таламуса, бледного шара, красного ядра и ретикулярной формации среднего мозга к ретикулярной формации и оливе продолговатого мозга; относится к экстрапирамидной системе.

Substantia nigra простирается на всем протяжении ножки мозга от моста до промежуточного мозга; по своей функции относится к экстрапирамидной системе. Расположенное вентрально от substantia nigra основание ножки мозга содержит продольные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижележащим отделам центральной нервной системы (tractus corticopontinus, corticonuclearis, corticospinalis и дp.). Tegmentum, находящаяся дорсально от substantia nigra, содержит преимущественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зрительного и обонятельного.

Среди ядер серого вещества самое значительное - красное ядро, nucleus ruber. Это удлиненное колбасовидное образование простирается в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий тракт, tractus rubrospinal, соединяющий красное ядро с передними рогами спинного мозга. Пучок этот после выхода из красного ядра перекрещивается с аналогичным пучком противоположной стороны в вентральной части срединного шва - вентральный перекрест покрышки.

Nucleus ruber является весьма важным координационным центром экстрапирамидной системы, связанным с остальными ее частями. К нему проходят волокна от мозжечка в составе верхних ножек последнего после их перекреста под крышей среднего мозга, вентрально от aqueductus cerebri, а также от pallidum - самого нижнего и самого древнего из подкорковых узлов головного мозга, входящих в состав экстрапирамидной системы. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него tractus rubrospinal оказывают влияние на всю скелетную мускулатуру в смысле регуляции бессознательных автоматических движений. В покрышку среднего мозга продолжаются также ретикулярная формация, formatio reticularis, и fasciculus longitudindlis medialis. Последний берет начало в различных местах. Одна из его частей начинается из вестибулярных ядер, проходит на той и другой стороне по бокам средней линии, непосредственно под серым веществом дна водопровода и IV желудочка, и состоит из восходящих и нисходящих волокон, идущих к ядрам III, IV, VI и XI черепных нервов. Медиальный продольный пучок является важным ассоциативным путем, связующим различные ядра нервов глазных мышц между собой, чем обусловливаются сочетанные движения глаз при отклонении их в ту или другую сторону. Функция его связана также с движениями глаз и головы, возникающими при раздражении аппарата равновесия.

Таламический мозг -

Таламический мозг, thalamencephalon состоит из трех частей: thalamus - таламус, epithalamus - надталамическая область и metathalamus - заталамическая область.

A. Thalamus, таламус, представляет собой большое парное скопление серого вещества в боковых стенках промежуточного мозга по бокам III желудочка, имеющее яйцевидную форму, причем передний его конец заострен в виде tuberculum anterius, а задний расширен и утолщен в виде подушки, pulvinar.

Деление на передний конец и подушку соответствует функциональному делению thalamus на центры афферентных путей (передний конец) и на зрительный центр (задний). Дорсальная поверхность покрыта тонким слоем белого вещества - stratum zonule. В латеральном своем отделе она обращена в полость бокового желудочка, отделяясь от соседнего с ней хвостатого ядра пограничной бороздкой, sulcus terminalis, являющейся границей между telencephalon, к которому принадлежит хвостатое ядро, и diencephalon, к которому относится таламус. По этой бороздке проходит полоска мозгового вещества, stria terminalis.

Медиальная поверхность таламуса, покрытая тонким слоем серого вещества, расположена вертикально и обращена в полость III желудочка, образуя его латеральную стенку. Сверху она отграничивается от дорсальной поверхности посредством белой мозговой полоски, stria medullaris thalami. Обе медиальные поверхности таламусов соединены между собой серой спайкой - adhesio interthalamica, лежащей почти посередине.

Латеральная поверхность таламуса граничит с внутренней капсулой, capsula interna. Нижней своей поверхностью таламус располагается над ножкой мозга, срастаясь с ее покрышкой. Как видно на разрезах, серая масса таламуса белыми прослойками, laminae medullares thalami, разделяется на отдельные ядра, носящие названия в зависимости от их топографии: передние, центральные, медиальные, латеральные, вентральные и задние. Функциональное значение таламуса очень велико. В нем переключаются афферентные пути: в его подушке, pulvinar, где находится заднее ядро, оканчивается часть волокон зрительного тракта (подкорковый центр зрения, ассоциативное ядро таламуса), в передних ядрах - пучок, идущий от s corpora mamillaria и связывающий таламус с обонятельной сферой, и, наконец, все остальные афферентные чувствительные пути от нижележащих отделов центральной нервной системы в остальных его ядрах, причем lemniscus medialis заканчивается в латеральных ядрах.

Таким образом, thalamus является подкорковым центром почти всех видов чувствительности. Отсюда чувствительные пути идут частью в подкорковые ядра (благодаря чему таламус является чувствительным центром экстрапирамидной системы), частью - непосредственно в кору (tractus thalamocorticalis).

Б. Epithalamus. Striae medullares обоих таламусов направляются кзади (каудально) и образуют на той и другой стороне треугольное расширение, называемое trigonum habenulae. От последнего отходит так называемый поводок, habenula, который вместе с таким же поводком противоположной стороны соединяется с шишковидным телом, corpus pineale. Спереди от corpus pineale оба поводка связаны вместе посредством commissiira habenularum. Само шишковидное тело, напоминающее несколько сосновую шишку (pinus - сосна, отчего и происходит его название), по своему строению и функции относится к железам внутренней секреции. Выдаваясь кзади в область среднего мозга, шишковидное тело располагается в бороздке между верхними холмиками крыши среднего мозга, образуя как бы пятый бугорок.

В. Metathalamus. Позади таламуса находятся два небольших возвышения - коленчатые тела, corpus geniculdtum laterale et mediale. Медиальное коленчатое тело, меньшее по размерам, но более выраженное, лежит спереди ручки нижнего холмика под pulvinar таламуса, отделенное от него ясной бороздкой. В нем заканчиваются волокна слуховой петли, lemniscus lateralis, вследствие чего оно является вместе с нижними холмиками крыши среднего мозга подкорковым центром слуха. Латеральное коленчатое тело, большее, в виде плоского бугорка помещается на нижней латеральной стороне pulvinar. В нем оканчивается большей своей частью латеральная часть зрительного тракта (другая часть тракта оканчивается в pulvinar). Поэтому вместе с pulvinar и верхними холмиками крыши среднего мозга латеральное коленчатое тело является подкорковым центром зрения. Ядра обоих коленчатых тел центральными путями связаны с корковыми концами соответственных анализаторов.

Твердая оболочка головного мозга -

Твердая оболочка, dura mater encephali, - плотная белесоватая соединительнотканная оболочка, лежащая снаружи от остальных оболочек. Наружная ее поверхность непосредственно прилежит к черепным костям, для которых твердая оболочка служит надкостницей, в чем состоит ее отличие от такой же оболочки спинного мозга.

Внутренняя поверхность, обращенная к мозгу, покрыта эндотелием и вследствие этого гладкая и блестящая. Между ней и паутинной оболочкой мозга находится узкое щелевидное пространство, spatium subdurale, заполненное небольшим количеством жидкости. Местами твердая оболочка расщепляется на два листка. Такое расщепление имеет место в области венозных синусов, а также в области ямки у верхушки пирамиды височной кости (impressio trigemini), где лежит узел тройничного нерва.

Твердая оболочка отдает со своей внутренней стороны несколько отростков, которые, проникая между частями мозга, отделяют их друг от друга. Falx cerebri, серп большого мозга, расположен в сагиттальном направлении между обоими полушариями большого мозга. Прикрепляясь по средней линии черепного свода к краям sulcus sinus sagittalis superioris, он своим передним узким концом прирастает к crista galli, а задним широким срастается с верхней поверхностью мозжечкового намета.

Tentorium cerebelli, намет мозжечка, представляет горизонтально натянутую пластинку, слегка выпуклую кверху наподобие двускатной крыши. Пластинка эта прикрепляется по краям sulcus sinus transversa затылочной кости и вдоль верхней грани пирамиды височной кости на обеих сторонах до processus clinoideus posterior клиновидной кости. Намет мозжечка отделяет затылочные доли большого мозга от нижележащего мозжечка. Falx cerebelli, серп мозжечка, располагается, так же как и серп большого мозга, по средней линии вдоль crista occipitalis interna до большого отверстия затылочной кости, охватывая последнее по бокам двумя ножками; этот невысокий отросток вдается в заднюю вырезку мозжечка.

Diaphragma sellae, диафрагма седла, пластинка, ограничивающая сверху вместилище для гипофиза на дне турецкого седла. В середине она прободается отверстием для пропуска воронки, infundibulum, к которой прикрепляется hypophysis.

Кровеносные сосуды твердой оболочки питают также кости черепа и образуют на внутренней пластинке последних вдавления, sulci meningei. Из артерий самая крупная a. meningea media, ветвь a. maxillaris, проходящая в череп через foramen spinosum клиновидной кости. В передней черепной ямке разветвляется небольшая ветвь из a. ophthalmica, а в задней - веточки из a. pharyngea ascendens, из a. vertebralis и из a. occipitalis, проникающие через foramen mastoideum. Вены твердой оболочки сопровождают соответствующие артерии, обычно по две, и впадают частью в синусы, частью в plexus pterygoideus.

Нервы. Твердая оболочка иннервируется тройничным нервом. Кроме собственных вен, твердая оболочка содержит ряд вместилищ, собирающих кровь из мозга и называемых синусами твердой оболочки, sinus durae matris. Синусы представляют венозные, лишенные клапанов каналы (треугольные в поперечном сечении), залегающие в толще самой твердой оболочки по местам прикрепления ее отростков к черепу и отличающиеся от вен строением своих стенок. Последние образованы туго натянутыми листками твердой оболочки, вследствие чего не спадаются при разрезе и при ранении зияют. Неподатливость стенок венозных синусов обеспечивает свободный отток венозной крови при смене внутричерепного давления, что важно для бесперебойной деятельности головного мозга, чем и объясняется наличие таких венозных синусов только в черепе.

Имеются следующие синусы: Sinus transversus - самый большой и широкий, расположен по заднему краю tentorium cerebelli в sulcus sinus transversi затылочной кости, откуда спускается как sinus sigmoideus в sulcus sinus sigmoidei и далее у foramen jugulare переходит в устье v. jugularis interna. Благодаря этому поперечный синус с сигмовидным служит главным коллектором для всей венозной крови черепной полости. В него частью непосредственно, частью опосредованно впадают все остальные синусы. Непосредственно в него впадают:

Sinus sagittalis superior идет по верхнему краю falx cerebri вдоль всего sulcus sinus sagittalis superioris от crista galli до protuberantia occipitalis interna; по бокам sinus sagittalis superior, в толще твердой оболочки, заложены так называемые кровяные озера - небольшие полости, сообщающиеся с одной стороны с синусом и диплоическими венами, а с другой - с венами твердой оболочки и мозга.

Sinus occipitalis - как бы продолжение предыдущего вдоль места прикрепления falx cerebelli к crista occipitalis interna и далее (после раздвоения) по обоим краям foramen magnum затылочной кости. Sinus rectus на линии прикрепления falx cerebri к tentorium cerebelli. Он принимает спереди sinus sagittalis inferior, идущий вдоль нижнего свободного края falx cerebri, а также v. cerebri magna, по которой кровь оттекает из глубоких частей мозга. В месте, где сходятся названные синусы (sinus transversus, sinus sagittalis superior, sinus rectus и sinus occipitalis), образуется общее расширение, известное под именем стока синусов, confluens sinuum. На основании черепа сбоку турецкого седла расположен пещеристый синус, sinus cavernosus, имеющий вид или венозного сплетения, или широкой лакуны, окружающей внутреннюю сонную артерию. Он соединяется с таким же синусом другой стороны двумя поперечными анастомозами, sinus intercavernosi, проходящими спереди и сзади fossa hypophysialis, вследствие чего в области турецкого седла образуется венозное кольцо.

Пещеристый синус представляет сложный анатомический комплекс, в состав которого, кроме самого синуса, входят внутренняя сонная артерия, нервные стволы и окружающая их соединительная ткань. Все эти образования составляют как бы особый прибор, играющий важную роль в регуляции внутричерепного тока венозной крови. Спереди в пещеристый синус вливаются v. ophthalmica superior, проходящая через верхнюю глазничную щель, а также нижний конец sinus sphenoparietalis, идущего вдоль края alae minoris. Отток крови из sinus cavernosus совершается в два лежащих сзади синуса: sinus petrosus superior et inferior, заложенные в соименных желобках, sulcus sinus petrosi superioris et inferioris.

Оба sinus petrosi inferiores соединяются между собой несколькими венозными каналами, которые лежат в толще твердой оболочки на базилярной части затылочной кости и называются в своей совокупности plexus basilaris. Plexus basilaris сообщается с венозными сплетениями позвоночного канала, через которые таким образом оттекает кровь из полости черепа. Главным путем оттока крови из синусов служат внутренние яремные вены, но, кроме того, венозные синусы соединяются с венами наружной поверхности черепа посредством так называемых эмиссарных вен, vv. emissariae, проходящих через отверстия в черепных костях (foramen parietale, foramen mastoideum, canalis condylaris).

Такую же роль играют небольшие вены, выходящие из черепа вместе с нервами через foramen ovale, foramen rotundum и canalis hypoglossal. В синусы твердой оболочки также впадают venae diploicae, вены губчатого вещества костей черепа; другим концом они могут иметь связь с наружными венами головы. Venae diploicae представляют анастомозирующие друг с другом каналы, выстланные изнутри слоем эндотелия и проходящие в губчатом веществе плоских костей черепа.

Теменная доля мозга -

На теменной доле приблизительно параллельно центральной борозде располагается sulcus postcentralis, сливающаяся обычно с sulcus intraparietalis, идущей в горизонтальном направлении. В зависимости от расположения этих борозд теменная доля разделяется на три извилины, из которых одна вертикальная, а две другие горизонтальные. Вертикальная извилина, gyrus postcentralis, идет позади sulcus centralis в одном направлении с gyrus precentralis, отделенная от нее центральной бороздой. Выше sulcus intraparietalis помещается верхняя теменная извилина, или долька, lobulus parietalis superior, которая распространяется и на медиальную поверхность полушария. Ниже sulcus intraparietalis лежит lobulus parietalis inferior, которая, направляясь назад, огибает концы латеральной борозды и sulcus temporalis superior и теряется в области затылочной доли. Часть lobulus parietalis inferior, огибающая латеральную борозду, называется gyrus supramarginalis; другая часть, которая огибает sulcus temporalis superior, носит название gyrus annularis.

Боковые желудочки мозга -

В полушариях конечного мозга залегают ниже уровня мозолистого тела симметрично по сторонам средней линии два боковых желудочка, ventriculi laterales, отделенные от верхнелатеральной поверхности полушарий всей толщей мозгового вещества.

Полость каждого бокового желудочка соответствует форме полушария: она начинается в лобной доле в виде загнутого вниз и в латеральную сторону переднего рога, cornu anterius, отсюда она через область теменной доли тянется под названием центральной части, pars centralis, которая на уровне заднего края мозолистого тела разделяется на нижний рог, cornu inferius, (в толще височной доли) и задний рог, cornu posterius (в затылочной доле).

Медиальная стенка переднего рога образована septum pellucidum, которая отделяет передний рог от такого же рога другого полушария.

Латеральная стенка и отчасти дно переднего рога заняты возвышением серого цвета, головкой хвостатого ядра, caput nuclei caudati, а верхняя стенка образуется волокнами мозолистого тела. Крыша центральной, наиболее узкой части бокового желудочка также состоит из волокон мозолистого тела, дно же составляется из продолжения хвостатого ядра, corpus nuclei caudati, и части верхней поверхности таламуса.

Задний рог окружен слоем белых нервных волокон, происходящих из мозолистого тела, так называемого tapetum (покров); на его медиальной стенке заметен валик - птичья шпора, calcar avis, образованная вдавлением со стороны sulcus calcarinus, находящейся на медиальной поверхности полушария. Верхнелатеральная стенка нижнего рога образуется tapetum, составляющим продолжение такого же образования, окружающего задний рог. С медиальной стороны на верхней стенке проходит загибающаяся книзу и кпереди утонченная часть хвостатого ядра - cauda nuclei caudati.

По медиальной стенке нижнего рога на всем протяжении тянется белого цвета возвышение - гиппокамп, hippocampus, который образуется вследствие вдавления от глубоко врезывающейся снаружи sulcus hippocampi. Передний конец hippocampus разделяется бороздками на несколько небольших бугорков. По медиальному краю гиппокампа идет так называемая бахромка, fimbria hippocampi, представляющая продолжение ножки свода (crus fornicis). На дне нижнего рога находится валик, eminentia collaterdlis, происходящий от вдавления снаружи одноименной борозды.

С медиальной стороны бокового желудочка в его центральную часть и нижний рог вдается мягкая мозговая оболочка, образующая в этом месте сосудистое сплетение, plexus choroideus ventriculi lateralis. Сплетение покрыто эпителием, представляющим остаток неразвитой медиальной стенки желудочка. Plexus choroideus ventriculi lateralis является латеральным краем tela choroidea ventriculi tertii.

Височная доля мозга -

Латеральная поверхность височной доли имеет три продольные извилины, отграниченные друг от друга sulcus temporalis superior и sulcus temporalis inferior. Верхняя из извилин, gyrus temporalis superior, находится между латеральной бороздой и sulcus temporalis superior.

Верхняя ее поверхность, скрытая в глубине латеральной борозды, несет 2-3 короткие извилинки, называемые gyri temporales transversi. Между верхней и нижней височными бороздами протягивается gyrus temporalis medius. Ниже последней, отделяясь от нее sulcus temporalis inferior, проходит gyrus temporalis inferior, которая посредством нижнего края отделена от лежащей на нижней поверхности gyrus occipitotemporalis lateralis.

Паутинная оболочка мозга -

Паутинная оболочка, arachnoidea encephali, так же как и в спинном мозге, отделяется от твердой оболочки капиллярной щелью субдурального пространства. Паутинная оболочка не заходит в глубину борозд и углублений мозга, как pia mater, но перекидывается через них в виде мостиков, вследствие чего между ней и мягкой оболочкой находится подпаутинное пространство, cavitas subarachnoidealis, которое наполнено прозрачной жидкостью.

В некоторых местах, преимущественно на основании мозга, подпаутинные пространства развиты особенно сильно, образуя широкие и глубокие вместилища спинномозговой жидкости, называемые цистернами. Имеются следующие цистерны:

Все подпаутинные пространства широко сообщаются между собой и у большого отверстия затылочной кости непосредственно продолжаются в подпаутинное пространство спинного мозга. Кроме того, они находятся в прямом сообщении с желудочками мозга через отверстия в области задней стенки IV желудочка: apertura mediana ventriculi quarti, открывающееся в cisterna cerebellomedullaris, и apertura lateralis ventriculi IV. В подпаутинных пространствах залегают мозговые сосуды, которые соединительнотканными перекладинами, trabeculae arachnoideales, и окружающей жидкостью предохраняются от сдавления.

Особенностью строения паутинной оболочки являются так называемые грануляции паутинной оболочки, granulationes arachnoideales, представляющие выросты паутинной оболочки в виде кругловатых телец серо-розового цвета, вдающихся в полость венозных синусов или же в лежащие рядом кровяные озера. Они имеются у детей и у взрослых, но наибольшей величины и многочисленности достигают в старости. Увеличиваясь в размерах, грануляции своим давлением на черепные кости образуют на внутренней поверхности последних углубления, известные в остеологии под названием foveolae granulares. Грануляции служат для оттока спинномозговой жидкости в кровяное русло путем фильтрации.

Мягкая оболочка, pia mater encephali, тесно прилегает к мозгу, заходя во все борозды и щели его поверхности, и содержит кровеносные сосуды и сосудистые сплетения. Между оболочкой и сосудами существует периваскулярная щель, сообщающаяся с подпаутинным пространством.

Передний мозг -

Передний мозг, prosencephalon, развивается в связи с обонятельным рецептором и вначале (у водных животных) является чисто обонятельным мозгом, rhinencephalon. С переходом животных из водной среды в воздушную роль обонятельного рецептора возрастает, так как с его помощью определяются содержащиеся в воздухе химические вещества, сигнализирующие животному о добыче, опасности и других жизненно важных явлениях природы с далекого расстояния, - дистантный рецептор.

Поэтому, а также благодаря развитию и совершенствованию других анализаторов передний мозг у наземных животных сильно разрастается и превосходит другие отделы центральной нервной системы, превращаясь из обонятельного мозга в орган, управляющий всем поведением животного. Соответственно двум основным формам поведения:

В эти две группы центров переднего мозга поступают все нервные импульсы и к ним протягиваются все афферентные чувствительные пути, которые (за немногими исключениями) предварительно проходят через один общий центр - таламус, thalamus.

Приспособление организма к среде путем изменения обмена вевеществ обусловило возникновение в переднем мозге высших центров, ведающих вегетативными процессами (гипоталамус, hypothalamus). Из двух частей переднего мозга, промежуточного мозга, diencephalon, и конечного, telencephalon, кора и подкорковые ядра относятся к конечному мозгу, а таламус и гипоталамус - к промежуточному.