PART 5: THE HIGHER GIANTS order type w^w to Γ Things get really crazy here with huge numbers too big to represent with large number notations of order type w^w like a xappol, a gongulus and a tethrathoth - some preliminary knowledge of googological notations is HIGHLY recommended.
{10,100(1)2} ~ {10,99(1)(1)2} (order type w^w ~ w^(w2)) Entries: 78 Goobol {10,10,10......10} with 100 10s or {10,100(1)2} A goobol is a linear array of 100 tens. It's the next of Bowers' googol extensions, and the smallest of his dimensional array googolisms (though this can still be written out using linear arrays). It's a good starting point for dimensional arrays. Godgahlah E100####......####100 with 100 #s or E100#^#100 This number is the end of Hyper-E and the beginning of Cascading-E, and was created before Cascading-E was invented. It can be written E100#^#100 in Cascading-E, and its name has a sense of far-reaching glory, unlike the goobol, a comparable googolism. Giatrixul 200![200,200,200] Roughly equal to a linear array of 202 200’s. The next official HAN number (giaquaxul) will take a very long time for us to reach. Godgahlahgong E100,000#######........#######100,000 with 100,000 #s or E100,000#^#100,000 This is the gong version of a godgahlah. It has even more of a glorious sense than the godgahlah.
This is a special googolism by Sbiis Saibian, like a godgahlah but with a
This number is the largest entry submitted by Pete in Bignum Bakeoff. Here, he uses the system in pete-5.c and pete-6.c, but extends it to calculate with arbitrary numbers of arguments. Here, Pete gives the function a tetrational number of arguments, creating a number comparable to a 2^^35-entry array. The number is much larger than a godgahlahgong but falls short of a dupertri.
Pete-7.c fell in third place in Bignum Bakeoff - the second place entry reaches past epsilon zero in the fast-growing hierarchy and the first place entry is so large that we don't know how to represent it in the fast-growing hierarchy! Dupertri {3,3,3...3} with tritri 3’s or {3,tritri(1)2} or {3,3,2(1)2} This number is a very low-level two-row array, a linear array of tritri threes. There will be plenty of 3-based Bowersisms coming your way. Their decimal expensions all end in the same way Graham’s number ends. Iteralplex/duperdecal {10,10,10....10} with iteral 10’s or {10,iteral(1)2} A linear array of an iteral tens. This can also be written {10,3,2(1)2}. Goobolplex {10,10,10........10} with goobol 10’s or {10,goobol(1)2} As glorious as this seems, we will be really taking this a lot further than plain old recursion. Grand godgahlah E100##########...................#########100 with godgahlah #s or E100#^#100#2 This is the next step in recursion from a godgahlah. It's comparable to a goobolplex. Grand godgahlahgong E100,000#############.......................#################100,000 with godgahlahgong #s or E100,000#^#100,000#2 This number, as stated by Saibian, has a real nice ring to it, bringing a sense of far-reaching glory like a googolgong once had for Sbiis Truperdecal/iteralduplex {10,duperdecal(1)2} Grand grand godgahlah E100#grand godgahlah100 or E100#^#100#3 This number can also be called "two-ex-grand godgahlah", although that doesn't really shorten the name. Grand grand godgahlahgong E100,000#grand godgahlahgong100,000 or E100,000#^#100,000#3 This feels like we’re really putting loads and loads of improvement over the godgahlah ... but it’s still barely scratching the surface of Cascading-E! It was at one point the largest number on Sbiis Saibian's large number list. Grand grand grand godgahlah / Three-ex-grand-godgahlah E100#^#100#4 Grand grand grand grand godgahlah / Four-ex-grand godgahlah E100#^#100#5 Gibbol {10,100,2(1)2} Stage 1 is 10. Stage 2 is {10,10,10,10,10,10,10,10,10,10} (iteral). Stage 3 is {10,10,10,10,10.......,10,10,10} with stage 2 10s. Keep going and a gibbol is stage 100. This still isn't much further recursion from a goobol though Grandgahlah E100#^#100#100 Also known as 99-ex-grand godgahlah, and comparable to gibbol. It’s the first new number defined with Cascading-E, as the previous godgahlah-based numbers were already created before Cascading-E. Googol-ex-grand godgahlah E100#^#100^(googol+1) Googolplex-ex-grand godgahlah Grangol-ex-grand godgahlah Greagol-ex-grand godgahlah Gigangol-ex-grand godgahlah Gugold-ex-grand godgahlah Saladgahlah [[(E100#^#100#(G(64)+1))^^(10^100,000,000,000,000,000))!2[2[5]]]^[(E100#^#100#(G(64)+1))^^(10^100,000,000,000,000,000))!2[2[5]]]]{9001}[[(E100#^#100#(G(64)+1))^^(10^100,000,000,000,000,000))!2[2[5]]]^[(E100#^#100#(G(64)+1))^^(10^100,000,000,000,000,000))!2[2[5]]]] This number is psychedelically huge, which can be obtained in the following process: first you take a Graham’s-number-ex-grand godgahlah, and then make a power tower of 1 followed by 100 quadrillion zeroes of that number, and then take its factorial, then take that number’s factorial, then take THAT number’s factorial, continue Moser's number of times! After that take the number to the power of itself! Finally, go and take that number, 9001 up-arrows, and that number again, and evaluate that! That is the saladgahlah! Nah... just kidding. This number is an example of a salad number, which I coined just for the hell of it and also as a number a naive googologist may come up with. What is a salad number, you may ask? It’s a number defined with a ridiculous number of inelegant steps in an attempt to be majestically large. These numbers are most often created by inexperienced googologists, who think that by combining a lot of different functions they’d get an amazingly huge number. This doesn’t work because to get anywhere, you need to define whole new functions, as old functions will always become obsolete at one point or another. In fact, Graham's-number-ex-grand godgahlah is so large that all the operators applied to it here have no real effect, so this number is only between gugold- and graatagold-ex-grand godgahlah. So much for a crazy hierarchy of steps.
Hell, even if they aren't familiar with the concept of salad numbers, people can generally intuitively recognize numbers like this as sloppy. Moving on... Graatagold-ex-grand godgahlah Gugolthra-ex-grand godgahlah Gugoltesla-ex-grand godgahlah Throogol-ex-grand godgahlah Tetroogol-ex-grand godgahlah Dektoogol-ex-grand godgahlah Godgahlah-ex-grand godgahlah As impressive as this sounds, it’s still a naive extension, since it's only one generation of recursion. Latri {3,3,3(1)2} = {3,3(1)3} Stage 1 = 3 Stage 2 = {3,3,3} = Tritri Stage 3 = {3,3,3.......3} with tritri 3’s = dupertri Stage 4 = {3,3,3,3...........3} with stage 3 3’s ... Latri is Stage Stage 3.
Latri is notable for being the smallest non-degenerate non-linear array that can be expressed with Bowers' array of operator - in this case, it's 2+1 & 3, since a+b & x is {x,x,x.....x,x,x(1)x,x,x,x......x.x,x} with a x's before (1) and b x's before (1). Grand godgahlah-ex-grand godgahlah Grand grandgahlah / grandgahlah-minus-one-ex-grand godgahlah E100#^#100#2 Grandgahlah-ex-grand godgahlah Godgahlah-ex-grand godgahlah-ex-grand godgahlah Despite this sounding like the potential next level, this is not where we’ll be going from here. Gabbol {10,100,3(1)2} If you go back to the gibbol stages, this number is stage stage stage ... ... stage 1, with 100 stages. Greagahlah E100#^#100#100#100 A bit better than grandgahlah and comparable to gabbol, but still recycling old operators. If we want to go anywhere we’ll need to define new operators. This is 99-ex-grand godgahlah-ex-grand godgahlah-ex-grand ... ... godgahlah with 100 godgahlahs. Geebol {10,100,4(1)2} Gigangahlah E100#^#100#100#100#100
Gorgegahlah E100#^#100#100#100#100#100
Gulgahlah E100#^#100#100#100#100#100#100
Gaspgahlah E100#^#100#100#100#100#100#100#100
Ginorgahlah E100#^#100#100#100#100#100#100#100#100 Boobol {10,10,100(1)2} Gugoldgahlah E100#^#100##100 Comparable to a boobol. Bibbol {10,10,100,2(1)2} Gugolthragahlah E100#^#100##100##100 Troobol {10,10,10,100(1)2} Throogahlah E100#^#100###100 Quadroobol {10,10,10,10,100(1)2} Yottoogahlah E100#^#100########100 Gootrol {10,100(1)3} Quite a bit better than the previous attempts, this number is to goobol as goobol is to googol. Gotrigahlah E100#^#100#^#100 Slightly better, but here we hit a problem. Instead of recycling old operators we are still just reusing our fresh operators. We’ll need to define new operators along the way if we want to get anywhere. This number is comparable to gootrol. Its order type in the fast-growing hierarchy is twice that of a godgahlah. Gitrol {10,100,2(1)3} Here are some more numbers: Gatrol Geetrol Gietrol Gotrol Gaitrol Bootrol Trootrol Quadrootrol Grangotrigahlah E100#^#100#^#100#100 Of course, after that we can have a greagotrigahlah, a gugoldgotrigahlah, a gugolthragotrigahlah, a throogotrigahlah, a tetroogotrigahlah, and so on. Gooquadrol {10,100(1)4} We can coin a series of -quadrol numbers, as well as -quintol, -sextol, -septol, etc. Gotergahlah E100#^#100#^#100#^#100 Comparable to gooquadrol. You can add a root of a Hyper-E number right before the name to create ten billion different numbers. Gopeggahlah E100#^#100#^#100#^#100#^#100 = E100#^#*#5 In general Ea@*#b (where a is any delimiter such as #^#) is Ea@a@a@a....@a with b a's. #*# can actually simplify to ##, since multiple #s in a row are interpreted as a product of #s. Here are some more numbers: Gohexgahlah Gohepgahlah Go-ahtgahlah Go-enngahlah Godekahlah Emperal {10,10(1)10} This googolism solves to {10,10,10,10,10,10,10,10,10,10(1)9}. To solve this you would need to decompose this into { ... ... ... (1)8}, and then that to { ... ... ... ... ... ... ... (1)7} until we get a huge linear array. Yikes! This is comparable to godekahlah. Gossol {10,10(1)100} Evaluates to {10,10,10,10,10,10,10,10,10,10(1)99}. Godgoldgahlah E100#^#*#100 Or E100#^#100#^#100#^#100..........#^#100 with 100 100’s. This number’s name makes sense because it is analogous to a gugold (E100#100#100.......#100 with 100 100’s) compared to the googol (E100). Gotrigoldgahlah E100#^#*#100#^#*#100 This number is comparable to a gissol and also can be written as E100#^#*##3. Gissol {10,10(1)100,2} Gotergoldgahlah E100#^#*##4 Comparable to gassol. Gassol {10,10(1)100,3} Geesol {10,10(1)100,4} Gussol {10,10(1)100,5} Hyperal {10,10(1)10,10} This number can also be written as: /10,10\ \10,10/. It's a 2x2 array of tens, which can also be called a 2+2, 2^2, 2^^2, etc. array of 10s. It evaluates to {10,10,10,10,10,10,10,10,10,10(1)9,10}.
This is the next of the Fish numbers, coined in 2002. It's a big jump from the previous, transcending Bowers' linear arrays and beginning dimensional arrays. It uses a function called s(n) mapping that reaches w^w in the fast growing hierarchy (the power of linear arrays), and then extends upon it to get a function that reaches low level dimensional arrays. In terms of Bowers' notation, it's about {63,63(1)2,63}.
Fish number 4 applies that idea to the busy beaver function, creating an uncomputable number. However, the next Fish number in numerical order, Fish number 5, uses a different system that reaches epsilon-zero in the fast-growing hierarchy. Mossol {10,10(1)10,100} Evaluates to {10,10,10,10,10,10,10,10,10,10(1)9,100}. Godthroogahlah E100#^#*##100 Solves to E100#^#*#100#^#*#100#^#*#100.........#^#*#100 with 100 100’s. This is comparable to mossol. Missol {10,10(1)10,100,2} Bossol {10,10(1)10,10,100} Godtetroogahlah E100#^#*###100 Comparable to bossol. Trossol {10,10(1)10,10,10,100} Godpentoogahlah E100#^#*####100 Goddektoogahlah E100#^#*#^#9 Diteral {10,10(1)(1)2} = {10,10,10,10,10,10,10,10,10,10(1)10,10,10,10,10,10,10,10,10,10} This evaluates to: /10,10,10,10,10,10,10,10,10,10\ \10,10,10,10,10,10,10,10,10,10/. Right around the limit of 2-row arrays. Now on to higher-level planar arrays!
The Planar-Array Range {10,100(1)(1)2} - {a,b(2)2}
Dubol {10,100(1)(1)2}
Or /10,10,10,10.........10\ \10,10,10,10.........10/ with 100 10s in each row. Yikes! This number is the start of 3-row arrays. By the way, (2) means move to the next plane, and {a,b(2)c} = {a,b(1)(1)(1)(1)........(1)c-1} with b (1)s, or a b*b array of a’s with c-1 behind the first a.
Also, note how for the low and high bound of the number range I’m using variables. This is because strict limits don’t feel right and I want the limit to just be a number expressible in the way shown. It also makes sense to use order types in the fast-growing hierarchy, because it's a very common way to approximate googologically large numbers.
Deutero-godgahlah E100#^#*#^#100
This number is comparable to dubol, and not too far from E100#^##100. Now we’re really starting to get somewhere with our godgahlah extensions.
Dutrol {10,100(1)(1)3}
Deutero-gotrigahlah E100#^#*#^#100#^#*#^#100
Comparable to dutrol.
Admiral {10,10(1)(1)10}
This is comparable to deutero-godekahlah, another military-themed Bowerian googolism.
Dossol {10,10(1)(1)100}
Deutero-godgoldgahlah E100#^#*#^#*#100
If we want to go anywhere we’ll need new delimiters (#....# expressions) altogether, like we’re doing. This number is comparable to dossol.
Cyperal {65,googolplex(1)1000,googol(1)7quadragintiquingentillion,42}
This is just another one of the deleted googolisms on Googology Wiki, deleted because no external sources were given. It's a strange number alright.
Dutritri {3,3(2)2} = {3,3,3(1)3,3,3(1)3,3,3}
Or /3,3,3\ |3,3,3| \3,3,3/ in array form. This is a square of nine threes.
Dutridecal {10,3(2)2}
Or /10,10,10\ |10,10,10| \10,10,10/, This is replacing every entry in the enormous dutritri with a 10, but really not too much of an improvement. We’ll need to go better, and faster.
Triubol {10,100(1)(1)(1)2}
A 3x100 array of 10s, and a number I coined.
Trito-godgahlah E100#^#*#^#*#^#100 = E100#^##3
At last we’re in the realm of #^##. Whew, that was a long way. But we’re still a long way to #^#^# and an even longer way to #^^#.
A deutero-godgahlah is about a 2-row array, trito- is 3 rows.....you can guess what a teterto-godgahlah would be.
Tetrubol {10,100(1)(1)(1)(1)2}
Comparable to teterto-godgahlah.
Teterto-godgahlah E100#^#*#^#*#^#*#^#100 = E100#^##4
Comparable to a 100-length 4-row array of 10s.
Pepto-godgahlah E100#^##5
Xappol {10,10(2)2} = 10^2 & 10
The xappol is the result of solving 10x10 array of 10's in Bowers' notation. Here is that array written out:
/10,10,10,10,10,10,10,10,10,10\ |10,10,10,10,10,10,10,10,10,10| |10,10,10,10,10,10,10,10,10,10| |10,10,10,10,10,10,10,10,10,10| / 10,10,10,10,10,10,10,10,10,10 \ \ 10,10,10,10,10,10,10,10,10,10 / |10,10,10,10,10,10,10,10,10,10| |10,10,10,10,10,10,10,10,10,10| |10,10,10,10,10,10,10,10,10,10| \10,10,10,10,10,10,10,10,10,10/
YIKES! This number is a good example of a big planar array. It would require an inconceivably large number of levels of decomposition just to get rid of the last row, and even more unfathomably long to completely solve!
The name xappol has been honored in the name XappolBot of the bot (programmed by Vel!) in Googology Wiki's
Dekato-godgahlah E100#^##10
Isosto-godgahlah E100#^##20
Goxxol {10,100(2)2}
Or a 100x100 array of 10s. Saibian coined this number as a number comparable to the next number.
Gridgahlah/hecato-godgahlah E100#^##100
This is the first real good extension to a godgahlah. It’s much further than any naive extension of Hyper-E could dream of going, and yet it just looks like a slight extension. Bigger and better numbers are coming our way, be prepared. This number is also in the same general domain of numbers as Bowers’ xappol, even though this is significantly bigger.
The planar array for this number would be too big to fit in the observable universe, or even for x observable universes where x is the number of Planck volumes in the universe - these numbers transcend any such analogy anyway. This number is the next step in recursion from a xappol.
The Multidimensional-Array Range {a,b(2)2} - {a,b(c)2} (order type w^w^2 ~ w^w^w) Entries: 43
Grand xappol {10,10(2)3}
Remember the array used to define a xappol? Put a 2 behind the first 10 and you get this. When you solve it to a planar array it would be horrendously huge, and then you'll need to go through insane decompositions just to even turn it into a linear array! However, with numbers this large this is a pretty modest improvement, as it's only doubling the order type!
Gridtrigahlah E100#^##100#^##100
Notice how we’re zooming a lot quicker than previously. This number is comparable to grand xappol as gridgahlah is to xappol.
Gridtergahlah E100#^##*#4
E100#^##*#100
Saibian does not define this and goes straight to bigger numbers, This number could probably be called a gridgoldgahlah.
E100#^##*##100
Could probably be called gridthroogahlah.
E100#^##*#^#100
This might be called a gridgodgahlah, I don't know. Saibian doesn't give a name for this number.
Deutero-gridgahlah E100#^##*#^##100
Just as a deutero-godgahlah is 2 rows, a deutero-gridgahlah is 2 planes.
Dimentri {3,3(3)2} = 3^3&3
Or {3,3,3(1)3,3,3(1)3,3,3(2)3,3,3(1)3,3,3(1)3,3,3(2)3,3,3(1)3,3,3(1)3,3,3} in full. This is a 3x3x3 cube of 27 3s and it's an unspeakable sized number in its own right. But it pales in comparison to the next numbers.
Trito-gridgahlah E100#^##*#^##*#^##100
About a 100x100x3 cube of 10s. Now let’s skip to a Bowersism:
Colossol {10,10(3)2}=10^3&10
This colossal number is a 10x10x10 CUBE of 10’s! It's a horrendous sized number of order type w^w^3, and decomposing it leads to insane levels of recursion. It was formerly called colossal.
Dekato-gridgahlah E100#^###10
The closest Saibianism to a colossol.
Coloxxol {10,100(3)2}=100^3&10
Instead of just a 10x10x10 cube of 10’s, this is a 100x100x100 cube of a million 10s! Saibian coined this to have a number comparable to kubikahlah.
Kubikahlah E100#^###100
About a 100x100x100 CUBE of 10s! We’re really getting to awesome stuff with these epicly huge numbers. This number is reasonably close to a colossol.
Deutero-kubikahlah E100#^###*#^###100
About a 100x100x100x2 tesseract of 10s! This number is heading straight into 4 dimensional arrays. How about....
Terossol {10,10(4)2}=10^4&10
A 10x10x10x10 tesseract of 10s! Tesseracts can be drawn by hand quite easily, but still quite mind-boggling to imagine. They aren’t too bad compared to higer dimensions. Anyway, solving this number would requitre solving 10 cubes, each bigger than the previous! Each cube would requite lots and lots of squares to solve, and lots more linear arrays just to decompose the squares! You’d end up with a vast linear array, and it’ll take a grueling number of steps to solve that into the final number!
Dekato-kubikahlah E100#^####10
Comparable to terossol.
Teroxxol {10,100(4)2}
Instead of just 10 cubes, solving this would take 100 enormous cubes! Just imagining this boggles your mind greatly. But it pales in comparison to the insanity of tetrational arrays (seen in a bit).
Quarticahlah E100#^####100
We’re almost to the realm of #^#^# numbers. This mind-boggling number is about a 100^4 tesseract of 10s! Solving the Cascading-E expressions isn’t much better than the arrays; you’ll need to correctly sort out the hyper-operators and probably mess up a bunch of times!
Petossol {10,10(5)2}
A 10^5 penteract of 10s. It requires solving multiple tesseracts, which in turn requires solving a mind-boggling number of cubes, and an even more mind-boggling number of squares, and rows, and we just can’t grasp how anyone would solve this! I suppose he still could, but at this point the computation is becoming abstract in itself.
Quinticahlah E100#^#####100
Or E100#^#^#5. At last we reached the realm of #^#^#! Not too long to E100#^#^#100 anymore. You can guess what comes next...
Ectossol {10,10(6)2}
A 10^6 hexeract of 10s! While we can draw tesseracts and penteracts quite eaily and still make them out, hexeracts and beyond will start to look like a mess even when mapped out by a computer program. The levels of decomposition needed to solve this are getting more and more horrendously huge.
Sexticahlah E100#^#^#6
Zettossol {10,10(7)2}
Septicahlah E100#^#^#7
Yottossol {10,10(8)2}
Octicahlah E100#^#^#8 Ogdo-octicahlah E100#^#^# This is Sbiis Saibian's 3000th googolism, defined using Cascading-E notation. It's approximately {10,100(8)(8)(8)(8)(8)(8)(8)(8)2} (8 (8)s) using Bowers' dimensional array notation.
Xennossol {10,10(9)2}
Xenna- is one of the unofficial SI prefixes used for 1000^9, or an octillion. Bowers seems to like using this one.
Nonicahlah E100#^#^#9
Dimendecal {10,10(10)2} = 10^10 & 10
A 10-dimensional array of 10s! Solving this would require continuously going through hypercubes, back and forth as the array slowly decreases in complexity.
Decichlah E100#^#^#10
Viginticahlah E100#^#^#20
Nonaginticahlah E100#^#^#90
Saibian defines more -cahlah numbers, but I’m skipping most of them because I don’t want to be repetitive. This is the last Saibianism smaller than the gongulus.
Gongulus {10,10(100)2} = 10^100 & 10
A gongulus is an unspeakably huge number coined by Jonathan Bowers. It's a 100-dimensional array of tens, which has exactly a googol entries when the array is expanded out. Bowers seems to bring that number up a lot more than other numbers of his (see negative gongulus, part 1). At this point, just to shake you up a little let's take a moment to discuss how INCREDIBLY HUGE a gongulus is. Tthis number makes Graham look adorable, to say the least. Graham’s number is so small that once you are introduced to it, you can explain it to anyone and they can understand how it would be computed! A gongulus, however, is far far beyond weeny little numbers whose computation you can understand. It’s much much much much much ... ... ... MUCH larger than Graham's number. A 100-dimensional cube may not seem too overwhelming, but once we get into it your mind will be blown.
To start off, a gongulus will look a bit like this:
x x x x x x x x x where each x is a 99-dimensional cube
And each 99-dimensional cube will consist of 10 98-dimensional cubes, and each of those will consist of 97-dimensional cubes, and each of THOSE will consist of 96-dimensional cubes, etc. The starting array for a gongulus will have a googol 10’s!
Still not impressed? Then let’s go inside the centeract (100-dimensional cube) and start seeing how it would be solved! First, you’ll need to solve the last 99-dimensional cube to turn the hypercube into an x*x*x*x.......*x*9 array of tens. But to solve that, you’ll need to solve a bunch of 98-dimensional cubes, and for each of those you’ll need to solve a bunch of 97-dimensional hypercubes, and for each one a 96-cube ... ... somewhere in the middle there’s 50, 49, 48, 47, etc. cubes ... ... until you get to the lines that decompose the squares, which in turn decompose the cubes, then the tesseracts ... each dimemsion would be more horrendous to solve than the previous! And that’s only the first 99-dimensional cube! Once you’ve got that 99-cube out of the way, you’ll need to solve the next incomprehensibly large 99-cube, but that would require solving lots and lots of 98-cubes, which requires a huge amount of 97-cubes, and a huge amount of 96-cubes, 95-cubes ... ... 29-cubes, 28-cubes ... ... tesseracts, cubes, squares, lines! Then the third 99-cube will need to be solved, and the fourth 99-cube next, each bigger than the previous, continuing with the fifth, sixth, seventh, eighth, ninth, and then the last 99-dimensional cube! To solve that cube, you’ll need a seemingly endless amount of 98-cubes, followed by 97, 96-, etc. cubes, but you’ve done that before a bunch of times, just this time it’s even bigger! Once you’re down to a 98-cube solve that to a 97-cube (which still requires 96-, 95-, 94-cubes ... ... ... tesseracts, cubes, squares, lines)! Once that 97-cube is over and you have a 96-cube, you’ll need to continue and continue through 94 more dimensions until you get an insanely big planar array, and you’ll need to solve that until you get a very, very long linear array! You’ll ned to solve that into gradually smaller linear arrays, and then into an up-arrow notation where you’ll need to repetitively evaluate the expresssions until you finally get a huge power of 10! Evaluate that, and that is a gongulus! And that isn’t even the full picture! It seems to never come to an end when trying to solve, as Bowers says.
That long explanation above is much longer and more overwhelming than any explanation of Graham’s number! And a full explanation of Graham’s number is wimpy compared to this mind-boggling overview of the computation of a gongulus! The gongulus is much much too mighty for us mortals to comprehend. Yet it’s only the beginning of a series of much worse numbers! Eventually we won’t be able to even imagine anything of what the arrays would be like! In other words, the gongulus, as mighty as it is, is easily trumped by FAR more unfathomable numbers! All in all, this number is a great example of a number that really crushes Graham's number - Sbiis Saibian describes the huge difference in a blog post, and suggests using a gongulus to replace the fame held by Graham's number, since Graham's number, by googological standards, is quite tiny and easy to analyze. Though I personally would transfer Graham's honor to something like the even bigger TREE(3), which like Graham's number has serious use in mathematics.
Second gongulus / Gonguxxus {10,100(0,1)2} = {10,100(100)2} = 100^100 & 10
Bowers’ gongulus extensions (such as {10,100(0,3)2} or {10,100(0,0,0,0,1)2}) don’t really match the gongulus, since there’s no way to express a gongulus as {a,b(x,y)c}. To fix this problem, Aarex coins the second gongulus, which matches better with the extensions. Sbiis Saibian calls this number
Godgathor E100#^#^#100
We’re all in all done with the godgahlah, gridgahlah, kubikahlah, and -icahlah series (collectively the godgahlah gang) and we’ve moved on to a whole new gang. Behold the godgathor gang. This Saibianism is comparable to the gongulus but closer to the second gongulus.
Even though #^#^# looks a lot friendlier than an x-dimensional array, guess what? It’s just as bad. Each #^#99 (#^####....#### with 99 #s) is equivalent to a 99-cube, each #^#98 is equal to a 98-cube, etc. Decomposing this will be quite akin to the horrendous decomposition of a gongulus!
Goober bunch E100#^#101100
This irregular number was defined by Saibian to break the monotony of his numbers. It’s defined as E100#^#100*#^#100*#^#100......#^#100100 with 100 #^#100s, simplifying to the expression above.
Gongulusplex {10,10(gongulus)2}
Remember the 100 dimensions we went through in the long gongulus paragraph? Now imagine having to go through a gongulus dimensions! We’ll pass through every whole number in this list up to a gongulus when working with the number of dimensions. Since you can’t even imagine how big a gongulus would be, it’s even more mind-boggling to imagine solving a gongulus-dimensional cube!
As impressive as this number is, it’s still a naive extension because anyone introduced to the gongulus could come up with that. We’ll need to move much faster than ANY recursion to get anywhere!
Grand godgathor E100#^#^#100#2
Or E100#^#godgathor100. It looks absolutely amazing, but it’s the same situation as a gongulusplex.
Gibbering goober bunch E100#^#goober bunch+1(goober bunch)
Defined as E100#^#goober bunch*#^#goober bunch#^#goober bunch......#^#goober bunch100 with a goober bunch #^#goober bunchs. It looks ambitious, but once again it isn’t a good improvement.
Gongulusduplex {10,10(gongulusplex)2}
Just imagine......you’ll need to go through a gongulusplex dimensions to solve the number. Doing that and growing through such a gigantic number of dimensions brings a sense of vast darkness. Kinda creepy if your think about it.
Gongulustriplex {10,10(gongulusduplex)2}
Gongulusquadriplex {10,10(gongulustriplex)2} Superdimensional Array Numbers {a,b(c)2}~{a,b((1)1)c} (order type w^w^w ~ w^w^w^w) Entries: 50Gotrigathor E100#^#^#100#^#^#100 Notice how we’re skipping stuff like E100#^#^#100##100 and heading straight to the good stuff. Also, superdimensional arrays are arrays which have dimensions of dimensions. It’s the first level of tetrational arrays. Following are trimensions (dimensions of superdimensions) and quadramensions, which are the higher tetrational arrays. Deutero-godgathor E100#^#^#*#^#^#100 Or E100#^(#^#*#)2. Trito-godgathor E100#^#^#*#^#^#*#^#^#100 Or E100#^(#^#*#)3. Hecato-godgathor / GodgathorfactE100#^(#^#*#)100 Note that E100#^#^#*#^#^#*#^#^#*#^#^#......*#^#^#100 with 100 #^#^#s is NOT E100#^#^##100. It simplifies to only E100#^(#^#*#)100 . Godgridgathor / GodgathordeuterfectE100#^(#^#*##)100 Decomposes to E100#^(#^#*#)*#^(#^#*#)*#^(#^#*#)*......#^(#^#*#)100, with 100 #^(#^#*#)s. Just imagine how many multiplication strings you’ll need to go through to decompose that. Dulatri {3,3(0,2)2} This Bowersism serves to help us better understand superdimensional arrays. To picture this array, imagine a 3x3x3 cube, but with each of the 27 slots filled with a 3x3x3 cube of 3’s, making it a number that scratches the surface of tetrational arrays. It’s also equal to an X^2X array of 3’s, with 729 threes. Godcubicgathor / GodgathortritofactE100#^(#^#*###)100 Godquarticgathor / GodgathortetrifactE100#^(#^#*####)100 Gingulus {10,100(0,2)2} A 100^(2*100) array of 10’s. This is the first group of superdimensions. To solve visualize this array, imagine a 100^100 dimensional array, but each slot is filled with a gongulus array. The array has 10^400 entries in total. Godgathordeus E100#^(#^#*#^#)100 Comparable to the gingulus. We’re almost to E100#^#^##100! Also, we can define the hecato-godgathordeus, and godgrid-, -cubic-, and -quarticgathordeus. Gangulus {10,100(0,3)2} A 100^(3*100) array of 10’s. The array can be visualized as a gongulus array of ginguluses. Godgathortruce E100#^(#^#*#^#*#^#)100 Simplifies to E100#^(#^##)3, or just E100#^#^##3. Comparable to gangulus. Geengulus {10,100(0,4)2} Godgathorquad E100#^#^##4 Gowngulus {10,100(0,5)2} Godgathorquid E100#^#^##5 Gungulus {10,100(0,6)2} Godgathorsid E100#^#^##6 Godgathorseptuce E100#^#^##7 Godgathoroctuce E100#^#^##8 GodgathornoniceE100#^#^##9GodgathordeciceE100#^#^##10Bongulus {10,100(0,0,1)2} Or {10,100(0,100)2}. A 100^100^2 array of 10’s, but still a low level superdimensional array. If stage 1 is the second gongulus, stage 2 is the gingulus, stage 3 is the gangulus, stage 4 is the geengulus, etc, then this is stage 100. Gralgathor E100#^#^##100 Here’s a really epic number, comparable to bongulus. This number simplifies to E100#^(#^#*#^#*#^#*#^#*#^#......#^#)100 with 100 #^#s! To simplify it, you would start off with E100#^(#^#*#^#*#^#........*#100)100, which first decomposes to E100#^(#^#*#^#*#^#........*#99)*#^(#^#*#^#*#^#........*#99)*#^(#^#*#^#*#^#........*#99).......*#^(#^#*#^#*#^#........*#99)100 with 100 #^(#^#*#^#*#^#........*#99)s! The last (but ONLY the last) #^(#^#*#^#*#^#........*#99) decomposes to #^(#^#*#^#*#^#........*#98*#^(#^#*#^#*#^#........*#98)*#^(#^#*#^#*#^#........*#98)....*#^(#^#*#^#*#^#........*#98), then the last one of those decomposes to #^(#^#*#^#*#^#........*#97*#^(#^#*#^#*#^#........*#97)*#^(#^#*#^#*#^#........*#97)....*#^(#^#*#^#*#^#........*#97), then we'll have to repeat the process 97 more times to end with a #^(#^#*#^#*#^#*#^#.....*#^#) with 99 #^#s instead of 100. Right then, we can decompose that very last #^# to #100 ... just so we can repeat that whole process all over again. Then we have to repeat it 100 times until it ends with a ridiculously long product of delimiters, but then we'll need to decompose that, and repeat again, and decompose that, repeat again ... you can scream now ... Absolutely mind-boggling!!!! And the godgathor (and gongulus) seemed mighty just moments ago. They are now in the dust with the wimpy little grand godgahlahgong! I told you numbers that make the gongulus look wimpy are headed our way - but you ain't seen nothing yet! Graltrigathor E100#^#^##100#^#^##100 Deutero-gralgathor E100#^#^##*#^#^##100 Or E100#^(#^##*#)2. Hecato-gralgathor E100#^(#^##*#)100 Hecato-x is no longer very effective. We’re going much faster now. GralgridgathorE100#^(#^##*##)100 Decomposes to E100@100@100@100.......@100 where each @ is #^(#^##*#). GralcubicgathorE100#^(#^##*###)100 GralgodgathgathorE100#^(#^##*#^#)100 GralgodgathordeusgathorE100#^(#^##*#^#*#^#)100 Bingulus {10,100(0,0,2)2} An X^(2*X^2) array of 10s. To imagine this array, you'll need a bongulus array of bongulus arrays - keep in mind that a bongulus array is a 100x nested array of gongulus arrays. Gralgathordeus E100#^(#^##*#^##)100 Or E100#^#^###2. Comparable to bingulus. Trimentri {3,3(0,0,0,1)2} Remember megafuga-three, which was equivalent to about 7.6 trillion? Well, that number is used to define this number, specifically as a 3^3^3 or 3^^3 array of 3’s. Trimentri can be expressed in various other ways. Here they are: {3,3(0,0,3)2} {3,3((1)1)2} A 3-superdimsional array of 3’s A 1-trimensional array of 3’s 3^3^3&3 3^^3&3 3^^^2&3 A 3 tetrated to 3 array of 3’s A 3 pentated to 2 array of 3’s Bangulus {10,100(0,0,3)2} An X^(3*X^2) array of 10s. Gralgathortruce E100#^#^###3 Beengulus {10,100(0,0,4)2} We saw this number’s reciprocal a loooooooooong time ago in part 1. Gralgathorquad E100#^#^###4 Trongulus {10,100(0,0,0,1)2} In the lower superdimensional arrays but still super insane. This number is about an X^X^3 array of 10’s! Thraelgathor E100#^#^###100 The numbers just keep getting crazier. To compute this, you’ll need to follow the same general thing we did with the gralgathor, then do it again and this time even longer, and it's difficult to bring to words. Keep in mind that we can coin plenty of numbers based on this like an isosto-thraelgathor and a thraelgathorseptuce. Quadrongulus {10,100(0,0,0,1)2} A four-superdimensional array of tens. Terinngathor E100#^#^####100 Comparable to the quadrongulus. Pentaelgathor E100#^#^#####100 Hexaelgathor E100#^#^#^#6 Heptaelgathor E100#^#^#^#7 Octaelgathor E100#^#^#^#8 EnnaelgathorE100#^#^#^#9DekaelgathorE100#^#^#^#10 Goplexulus {10,100((1)1)2} Also imaginable as: {10,100(0,0,0,0.......0,1)2} with 100 zeros 100^100^100&10 A 100-superdimensional array of tens A 100 tetrated to 3 array of tens This number is right around the end of superdimensional arrays and the beginning of higher tetrational arrays. It's formed with some pretty insane array nesting. Godtothol E100#^#^#^#100 This number simplifies to E100#^#^#100100 (hectaelgathor perhaps), and once solving it further the expression expands rapidly in length. We saw how insane the gralgathor was, so this has to be much much more crazy. By the way, this is comparable to goplexulus. The Ordinal-Tetration Range {a,b(x,y.....n)c} ~ X^^X & a (order type w^w^w^w ~ ε0) Entries: 22
Graltothol E100#^#^#^##100 The gralgathor was crazy, so is there a reason for this not to be super ultra mega crazy? I think not. To solve this, you’ll need to first go through the whole gralgathor fun zillions of times just to get anywhere. This is about an X^X^X^2, or 2-trimensional, array of tens!!
_{w^w^w^(w^2*w7)}(100). Read Sbiis Saibian's list of Cascading-E googolisms for why it's named like that.Thraeltothol E100#^#^#^###100 Terinntothol E100#^#^#^####100 Goduplexulus {10,10((100)1)2} = 100^^4 & 10 We’re heading further and further into the tetrational arrays - this is a 100-trimensional array of tens. Godtertol E100#^#^#^#^#100 We’re almost done with the Cascading-E numbers and are getting ready to head into Extended Cascading-E. This is comparable to goduplexulus. I could include all the numbers in the godtertathol gang and the rest of the -tathol gangs, but I don’t want to be repetitive. Gotriplexulus 100^^5 & 10 = {10,100(((1)1)1)2} A 100-quadramensional array of tens. Godtopol E100#^#^#^#^#^#100 Godhathor E100#^#^#^#^#^#^#100 Godheptol E100#^#^#^#^#^#^#^#100 Godoctol E100#^#^#^#^#^#^#^#^#100 Godentol E100#^#^#^#^#^#^#^#^#^#100
Quintuple-hyper-terinntopoldeusE100#^#^#^#^#^#^(#^#^#^#^####*#^#^#^#^####)100This is Sbiis Saibian's 5000th googolism, a decent tetrational-array level number. It is a member of the godektathol regiment and it's approximately f_{w^w^w^w^w^w^(w^(w^w^w^4*2))}(100) using the fast-growing hierarchy.Tethrathoth E100#^#^#^#^#^#^# ... ... ... ^#^#100 with 100 #s = E100#^^#100 The tethrathoth is one of Sbiis Saibian's milestone googolisms. It's comparable to and a little smaller than Bowers’ goppatoth. It’s approximately equal to an X^^99 array of 10s. Its name comes from tetration + Thoth, the Egyptian god of mathematics, since it's formed by tetrating #s, and it's on the order of epsilon-zero in the fast-growing hierarchy. Goppatoth 10^^100 & 10 A goppatoth is a large tetrational array googolism by Jonathan Bowers. It's a ten-tetrated-to-100 array of tens, which would be 10 99-mensional array of 10s, and a 1 100-mensional array of 10s. There are a giggol 10s in the starting array, and the number is a little bigger than a tethrathoth. Second Goppatoth X^^X & 100 = 100^^100 & 100 Just as the gongulus does not match with its extensions, the goppatoth will not match with my extensions. To make it match, I’ve defined the second goppatoth to match with those extensions, just as Aarex defined the second gongulus. That’s the only reason this number exists. Giaquaxul 200![200,200,200,200] This number is pronounced gia-quazzle, and it shows how 4-entry hyperfactorial arrays grow surprisingly quickly. In general, [a,b,c,2] hyperfactorial arrays are on the realm of dimensional arrays, [a,b,c,3] arrays are superdimensional, [a,b,c,4] are trimensional, [a,b,c,5] are quadramensional, etc. The next major Hollomism (hugexul) is much much much larger and is a very long way from here.
This is just a placeholder entry to discuss order-type epsilon-zero in the fast-growing hierarchy. It's an interesting tipping point for googologically large numbers.
Why is that? Because after numbers of order type epsilon-zero, they quickly become harder and harder to work with - even epsilon-one has two notably different fundamental sequences, making comparing numbers with the fast-growing hierarchy a lot harder to work with. There seems to be a general natural way to get up to epsilon-zero in the FGH, but soon afterwards there are several different paths you can take, many of which will need ways to work around the annoying +1's that may crop up (e.g. w^(ε0+1)). After order-type epsilon-zero, BEAF also becomes harder to work with - because of ambiguity, it is up to the reader to interpret the numbers. Up to a certain point the numbers nowadays are pretty clear, but later levels (discussed in parts 6-7) are still pretty unclear.
Epsilon-zero is the growth rate achieved by Cascading-E notation and Bowers' tetrational arrays, as well as m(n) mapping used in Fish number 5 - it's a common growth rate for functions.
I should point out that this is one of the largest levels of number size mentioned on Wikipedia: in its article on the slow-growing hierarchy (a relative of the fast-growing hierarchy) it says: "The slow-growing hierarchy grows much more slowly than the fast-growing hierarchy. Even However, Wikipedia discusses still larger numbers later, and the largest computable number to appear on Wikipedia may be the famous TREE(3). Tethrathothigong E100,000#^#^#^#^#.......^#100,000 with 100,000 #s = E100,000#^^#100,000 This is the gong version of a tethrathoth, for old time's sake as Sbiis Saibian said. It's technically insanely larger than a tethrathoth with 100,000 cascade levels instead of just 100, but it's a modest improvement compared to what's next. Grand tethrathoth E100#^#^#^#^#^#^#...........^#100 with tethrathoth #s = E100#^^#100#2 The next step in recursion for a tethrathoth. This might seem utterly insane, but it's still a naive extension because anyone who encountered the tethrathoth can come up with such a number. We need to go Goppatothplex 10^^goppatoth & 10 A goppatoth is a ten tetrated to a goppatoth array of tens, the next step in recursion after a goppatoth.
Therefore I am going to put them in based on the value using Bowers' and Saibian's theory of the Grand grand tethrathoth E100#^^#grand tethrathoth = E100#^^#100#3 The Epsilon Range X^^X&a - X^^(X+1)&a (order type ε0 ~ εw) Entries: 61
This number was defined by Kyodaisuu of Googology Wiki in 2003. It uses a system called m(n) mapping that reaches epsilon-zero in the fast-growing hierarchy, the same power of Bowers' tetrational arrays. The number falls just under a grantethrathoth, which is about f Grangol-carta-tethrathoth / grantethrathoth / 99-ex-grand tethrathoth E100#^^#100#100 This number is also equal to 99-ex-grand tethrathoth. Greagol-carta-tethrathoth/greatethrathoth E100#^^#100#100#100 Gigangol-carta-tethrathoth/gigantethrathoth E100#^^#100#100#100#100 Gugolda-carta-tethrathoth E100#^^#100##100
This is Heiner Marxen's entry in Bignum Bakeoff, the second place entry in Bignum Bakeoff. Unlike other submissions, this one uses a fast-growing function called Goodstein sequences that reaches epsilon-zero in the fast-growing hierarchy, then iterates it to produce a number that makes it a little further than order type epsilon-zero. It can be approximated in Extended Cascading-E as E1,000,000#^^#1,000,000##1,000,000##1,000,000, placing it just above a gugolthra-carta-tethrathoth. It's difficult to use only 512 characters to create a recursive function in C like the other people did that reaches epsilon-zero, which is why using a fast-growing function like Goodstein sequences is clever.
The output of marxen.c is far far smaller than the winning entry. The winning entry is the output of loader.c, Ralph Loader's entry, which is often called Loader's number. We don't even know how to approximate Loader's number in the fast-growing hierarchy because it's so huge. Loader's number can be found in part 7 of this list (COMING SOON). Throogola-carta-tethrathoth E100#^^#100###100
Teroogola-carta-tethrathoth
Godgahlah-carta-tethrathoth E100#^^#100#^#100 Gridgahlah-carta-tethrathoth E100#^^#100#^##100 Kubikahlah-carta-tethrathoth E100#^^#100#^###100 Quarticahlah-carta-tethrathoth E100#^^#100#^####100 Godgathor-carta-tethrathoth E100#^^#100#^#^#100 Godtothol-carta-tethrathoth E100#^^#100#^#^#^#100 Tethrathoth-carta-tethrathoth/tethratrithoth E100#^^#100#^^#100 = E100#^^#*#3 Tethraterthoth E100#^^#100#^^#100#^^#100 = E100#^^#*#4 Tethrathoth-by-hyperion E100#^^#*#100 Tethrathoth-by-deutrohyperion E100#^^#*##100 Evaluates to E100#^^#*#100#^^#*#100.....#^^#*#100 with 100 100’s. Tethrathoth-by-tritohyperion E100#^^#*###100 Tethrathoth-by-godgahlah E100#^^#*#^#100 Tethrathoth-by-godgathor E100#^^#*#^#^#100 Deutero-tethrathoth E100#^^#*#^^#100 = E100(#^^#)^#2 Trito-tethrathoth E100#^^#*#^^#*#^^#100 = E100(#^^#)^#3 Hecato-tethrathoth/tethrafact E100(#^^#)^#100 This number is called tethrafact because the tethrathoth delimiter is the only factor of the whole expression. It’s still not really that great of an improvement, but kind of the base for what will come. Grideutertethrathoth E100(#^^#)^##100 Or E100(#^^#)^#*(#^^#)^#*(#^^#)^#.....*(#^^#)^# with 100 (#^^#)^#s. This number can also be called hecato-tethrafact, but Saibian does not give this name. Kubicutethrathoth E100(#^^#)^###100 = E100(#^^#)^#^#3 Tethragodgathor / Centicutethrathoth E100(#^^#)^#^#100 Tethragodtothol E100(#^^#)^#^#^#100 = E100(#^^#)^(#^^#)3 Tethraduliath/tethra-tethrathoth/tethrathoth-dopplux/tethrathoth-dubletetrate E100(#^^#)^(#^^#)100 = E100(#^^#)^^#2 This is a milestone point in Extended Cascading-E - it's just starting on tetrating the tethrathoth delimiter. Pretty soon the tetration will be iterated. It's interesting to point out that Saibian explicity gives four different names for this number. Tethradulifact E100(#^^#)^(#^^#*#)100 Evaluates to E100(#^^#)^(#^^#)*(#^^#)^(#^^#)*(#^^#)^(#^^#).....*(#^^#)^(#^^#) with 100 (#^^#)^(#^^#)s. Grideutertethraduliath E100(#^^#)^(#^^#*##)100 Tethraduli-godgathor E100(#^^#)^(#^^#*#^#)100 Tethrathruliath E100(#^^#)^(#^^#*#^^#)100 Tethraterliath E100(#^^#)^(#^^#*#^^#*#^^#)100 = E100(#^^#)^(#^^#)^#3 Monster-Giant E100(#^^#)^(#^^#)^#100 The somewhat irregular Monster-Giant is a pretty awesome number. It decomposes to E100(#^^#)^(#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#)100. This is pretty insane now (comparable to a (X^^X) Grand Monster-Giant E100(#^^#)^(#^^#)^#100#2 Or E100(#^^#)^(#^^#*#^^#*#^^#*#^^#*#^^#*......................*#^^#)100 with Monster-Giant+1 #^^#s! As impressive as this sounds, it's still a naive extensions. We can further extend upon the Monster-Giant with numbers like: Deutero-Monster-Giant E100(#^^#)^(#^^#)^#*(#^^#)^(#^^#)^#100 Trito-Monster-Giant E100(#^^#)^((#^^#)^#*#)3 Hecato-Monster-Giant E100(#^^#)^((#^^#)^#*#)100 Tethra-Monster-Giant E100(#^^#)^((#^^#)^#*#^^#)100 Tethraduli-Monster-Giant E100(#^^#)^((#^^#)^#*#^^#*#^^#)100 = E100(#^^#)^((#^^#)^#*(#^^#)^#)2 Monster-Monster-Giant = Two-ex-Monster-Giant E100(#^^#)^((#^^#)^#*(#^^#)^#)100 = E100(#^^#)^(#^^#)^##2 Three-ex-Monster-Giant E100(#^^#)^((#^^#)^#*(#^^#)^#*(#^^#)^#)100 = E100(#^^#)^(#^^#)^##3 Hundred-ex-Monster-Giant/Monster-Grid E100(#^^#)^(#^^#)^##100
Monster-Giant-ex-Monster-Giant E100(#^^#)^(#^^#)^##(Monster-Giant)
Grand Monster-Grid E100(#^^#)^(#^^#)^##100#2 Monster-Cube E100(#^^#)^(#^^#)^###100 Monster-Tesseract E100(#^^#)^(#^^#)^####100 Monster-Hecateract E100(#^^#)^(#^^#)^#^#100 Tethrathoth-trebletetrate E100(#^^#)^(#^^#)^(#^^#)100 = E100(#^^#)^^#3 Super Monster-Giant E100(#^^#)^(#^^#)^(#^^#)^#100 Evaluates to: E100(#^^#)^(#^^#)^(#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#* #^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#*#^^#)100 Super Monster-Grid E100(#^^#)^(#^^#)^(#^^#)^##100 Tethrathoth-quadrupletetrate E100(#^^#)^^#4 Tethrathoth-quintupletetrate E100(#^^#)^^#5 Tethrathoth-decupletetrate E100(#^^#)^^#10 Terrible tethrathoth E100(#^^#)^^#100 Evaluates to E100(#^^#)^(#^^#)^(#^^#)^(#^^#)^(#^^#).......^(#^^#) with 100 (#^^#)s. Dubletetrated terrible tethrathoth E100((#^^#)^^#)^((#^^#)^^#)100 = E100(((#^^#)^^#)^^#)2 Trebletetrated terrible tethrathoth E100(((#^^#)^^#)^^#)3 Double-terrible tethrathoth E100(((#^^#)^^#)^^#)100 Triple-terrible tethrathoth E100((((#^^#)^^#)^^#)^^#)100 The Hyper-Epsilon Range X^^(X+1) & a - X^^X^2 & a (order type εw ~ ζ0) Entries: 68 Tethriterator / Tethrathoth ba’al / 99-ex-terrible tethrathoth E100(....((#^^#)^^#)........^^#)100 with 100 #^^#s = E100#^^#>#100 This is Sbiis Saibian's smallest googolism to use the > operator, a special operator called the "caret top" which iterates the function applied to the # before it. Terrible tethrathoth is E100#^^#>#2, double-terrible tethrathoth is E100#^^#>#3, triple-terrible tethrathoth is E100#^^#>#4, and so on with the > operator. This number called tethriterator because it iterates the smallest tetrational delimiter, or #^^#. Grand tethriterator / Great and Terrible Tethrathoth / tethrathoth-ba'al-minus-one-ex-terrible tethrathoth E100(... ...((#^^#)^^#)^^#)^^#) ... ... ^^#)100 with tethrathoth ba’al #^^#s = E100#^^#>#100#2 As insane as this looks, you should know by now that such recursion, unfortunately, is not really progress anymore.
This is Sbiis Saibian's 6000th googolism, defined using Extended Cascading-E. It's about f _{εw}(f_{ε0^ε0^}_{ε0^ε0}(100)) using the fast-growing hierarchy, or about X^^(X+1) & ((X^^X)^^4 & 100) using the climbing method interpretation of the array-of operator in BEAF. It's an example of a number you can form by repeatedly applying the terrible operator, but it's much smaller than even...Grangol-carta-tethriterator E100#^^#>#100#100 Or 99-ex-grand tethriterator. Although this is mind-crushingly larger than something like Tethritertri E100#^^#>#100#^^#>#100 = E100#^^#>#*#3 Tethriterhecate/tethritera-by-hyperion E100#^^#>#*#100 Tethritera-by-deutero-hyperion E100#^^#>#*##100 Tethritera-by-godgahlah E100#^^#>#*#^#100 Tethritera-by-tethrathoth E100#^^#>#*#^^#100 Deutero-tethriterator E100#^^#>#*#^^#>#100 Trito-tethriterator E100#^^#>#*#^^#>#*#^^#>#100 = E100(#^^#>#)^#3 Hecato-tethriterator/tethriterfact E100(#^^#>#)^#100 Grideutertethriterator/hecato-tethriterfact E100(#^^#>#)^##100 Tethriter-godgathor E100(#^^#>#)^#^#100 Tethriter-tethrathoth E100(#^^#>#)^#^^#100 Tethriter-terri-tethrathoth E100(#^^#>#)^(#^^#)^^#100 Tethriter-dubletetrate E100(#^^#>#)^(#^^#>#)100 = E100(#^^#>#)^^#2 Terrible tethriterator E100(#^^#>#)^^#100 Double-terrible tethriterator E100((#^^#>#)^^#)^^#100 Tethriditerator / 100-ex-terrible tethriterator E100#^^#>(#+#)100 Terrible tethriditerator E100(#^^#>(#+#))^^#100 Tethritriterator / 100-ex-terrible tethritriterator E100#^^#>(#+#+#)100 = E100#^^#>##3 Tethriquaditerator E100#^^#>##4 Tethrigriditerator E100#^^#>##100 Tethricubiculator E100#^^#>###100 Tethriquarticulator E100#^^#>####100 Tethrispatialator E100#^^#>#^#100 Tethrispatial-squarediterator E100#^^#>(#^#*#^#)100 Tethrispatial-cubiculator E100#^^#>#^##3 Tethrideuterspatialator E100#^^#>#^##100 Tethritritospatialator E100#^^#>#^###100 Tethritetertospatialator E100#^^#>#^#^#4 Tethri-superspatialator E100#^^#>#^#^#100 Tethri-quadratetratediterator E100#^^#>#^#^#^#100 Dustaculated-tethrathoth E100#^^#>#^^#100 Can also be written as E100#^^##2.
This is a googolism I coined as a fairly low-level pentational array number. I'm putting this and related numbers under the climbing method interpretation - although the non-climbing interpretation is more commonly used among the googology community, the climbing method intentionally matches nicely with Extended Cascading-E, and is largely advocated by Bowers. This is comparable to a dustaculated-tethrathoth. Tethriter-turreted-tethrathoth E100#^^#>#^^#>#100 Territethriter-turreted-tethrathoth E100#^^#>(#^^#>#)^^#100 Not to be confused with the much smaller terrible tethriter-turreted-tethrathoth. Tethriditer-turreted-tethrathoth E100#^^#>#^^#>(#+#)100 Tethritriter-turreted-tethrathoth E100#^^#>#^^#>##3 Tethrigriditer-turreted-tethrathoth E100#^^#>#^^#>##100 Tristaculated-tethrathoth E100#^^#>#^^#>#^^#100
Comparable to a tristaculated-tethrathoth. Tetrastaculated-tethrathoth E100#^^#>#^^#>#^^#>#^^#100 Geepatoth X^^4X & 100 Pentastaculated-tethrathoth E100#^^##5 Dekastaculated-tethrathoth E100#^^##10 Tethracross / Tethrasquare E100#^^##100 A tethracross is another one of Sbiis Saibian's milestone googolisms. It's on the order of zeta-zero in the fast-growing hierarchy. It evaluates to: E100#^^#>#^^#>#^^# ... ... ... >#^^#>#^^#100 with 100 copies of #^^# It is comparable to Bowers' kungulus using the more common interpretation of pentational arrays, although using the climbing method (which I'm using on this list) it's much smaller than a kungulus.
Another extrapolation from the tethrathoth, based on Bowers' number, the bongulus. It's comparable to a tethrasquare. Giaquixul 200![200,200,200,200,200] A number I coined, which is in the realm of X^^X^2 arrays. The next HAN number after this will be the hugexul. Berlin Wall E100#^^##100,000,000 An irregular number defined by Saibian. The expression it expands to, or E100#^^#>#^^#>#^^#>#^^#.....#^^#>#^^#>#^^#100 with 100,000,000 #^^#>s wouldn’t be much longer than the real Berlin Wall, but that also depends on the text size. Grand tethracross E100#^^##100#2
Fish number 6 is the largest computable Fish number, defined by Kyodaisuu of Googology Wiki in 2007. It extends upon Fish number 5's system with a two-argument function that reaches zeta-0 in the fast growing hierarchy (the power of X^^X^2 arrays), so it falls just under a grangol-carta-tethrasquare, equal to about f
X^^^X^2 & a - X^^X^X & a (order type ζ0 ~ φ(w,0)) Entries: 121 Grangol-carta-tethrasquare E100#^^##100#100 Godgahlah-carta-tethrasquare E100#^^##100#^#100 Tethrathoth-carta-tethrasquare E100#^^##100#^^#100 Tethriterator-carta-tethrasquare E100#^^##100#^^#>#100 Tethrasquare-by-deuteron E100#^^##100#^^##100 Tethrasquare-by-triton E100#^^##100#^^##100#^^##100 = E100#^^##*#4 Tethrasquare-by-hyperion E100#^^##*#100 Tethrasquare-by-deuterohyperion E100#^^##*##100 Tethrasquare-by-godgahlah E100#^^##*#^#100 Tethrasquare-by-tethrathoth E100#^^##*#^^#100 Tethrasquare-by-tethriterator E100#^^##*#^^#>#100 Deutero-tethrasquare E100#^^##*#^^##100 Trito-tehtrasquare E100#^^##*#^^##*#^^##100 = E100(#^^##)^#3 Hecato-tethrasquare/tethrasquarorfact E100(#^^##)^#100 Grideutertethrasquare E100(#^^##)^##100 Centicutethrasquare E100(#^^##)^#^#100 E100(#^^##)^#^#^#100 E100(#^^##)^(#^^#)100 E100(#^^##)^(#^^#>#)100 Dutetrated-tethrasquare E100(#^^##)^(#^^##)100 Tritetrated-tethrasquare E100(#^^##)^(#^^##)^(#^^##)100 = E100(#^^##)^^#3 Terrible tethrasquare E100(#^^##)^^#100 Tethriterated-tethrasquare E100(#^^##)^^#>#100 Tethrastaculated-tethritertethrasquare E100(#^^##)^^#>#^^#100 Tethriterstaculated-tethritertethrasquare E100(#^^##)^^#>#^^#>#100 Dustaculated-tethraturreted-tethritertethrasquare E100(#^^##)^^#>#^^#>#^^#100 Tristaculated-tethraturreted-tethritertethrasquare E100(#^^##)^^#>#^^#>#^^#>#^^#100 = E100(#^^##)^^#>#^^##3 Tetrastaculated-tethraturreted-tethritertethrasquare E100(#^^##)^^#>#^^##4 Tethrasquare-turreted-tethritertethrasquare E100(#^^##)^^#>#^^##100 Territethrasquare-turreted-tethritetrtethrasquare / Dustaculated-tethritertethrasquare E100(#^^##)^^#>(#^^##)^^#100 Sorry that the names sound absurdly long, but it kind of needs to be that way if we want to have a useful system to name any such number. After all, naming systems are a big part of googology, and almost by necessity the names can get pretty long. Tristaculated-tethritertethrasquare E100(#^^##)^^#>(#^^##)^^#>(#^^##)^^#100 = E100(#^^##)^^##3 Tetrastaculated-tethritertethrasquare E100(#^^##)^^##4 Dekastaculated-tethritertethrasquare E100(#^^##)^^##10 Secundo-tethrated tethrasquare E100(#^^##)^^##100 Dustaculated-secundo-tethrated tethrasquare E100(#^^##)^^##>(#^^##)^^##100 Tristaculated-secundo-tethrated tethrasquare E100(#^^##)^^##>(#^^##)^^##>(#^^##)^^##100 = E100((#^^##)^^##)^^##3 Thrice-tethrasecunda E100((#^^##)^^##)^^##100 = E100#^^##>#3 Quatrice-tethrasecunda E100#^^##>#4 Tethrasquarediterator E100#^^##>#100 Tethrasquared-diterator E100#^^##>(#+#)100 = E100#^^##>##2 Tethrasquared-triterator E100#^^##>##3 Tethrasquared-griditerator E100#^^##>##100 Tethrasquared-cubiculator E100#^^##>###100 Tethrasquared-spatialator E100#^^##>#^#100 Tethrasquared-superspatialator E100#^^##>#^#^#100 Tethrasquared-quadratetratediterator E100#^^##>#^^#4 Tethraturreted-tethrasquare E100#^^##>#^^#100 Dustacu-tethraturreted-tethrasquare E100#^^##>#^^#>#^^#100 Tristacu-tethraturreted-tethrasquare E100#^^##>#^^#>#^^#>#^^#100 = E100#^^##>#^^##3 Dustaculated-tethrasquare E100#^^##>#^^##100 Tristaculated-tethrasquare E100#^^##>#^^##>#^^##100 = E100#^^###3 Tetrastaculated-tethrasquare E100#^^###4 Dekastaculated-tethrasquare E100#^^###10 Tethracubor / tethratertia E100#^^###100 A tethracubor is of the order of eta-zero in the fast-growing hierarchy. It's the next of Sbiis Saibian's milestone googolisms, and its name begins the idea of naming numbers after multidimensional figures.
Comparable to tethracubor. Grand tethracubor E100#^^###100#2 = E100#^^###tethracubor Deutero-tethracubor E100#^^###*#^^###100 Hecato-tethracubor/tethracuborfact E100(#^^###)^#100 Grideutertethracubor E100(#^^###)^##100 Tethracubor-godgathored E100(#^^###)^#^#100 Tethracubor-godtotholed E100(#^^###)^#^#^#100 Tethracubor-isptethrathoth E100(#^^###)^#^^#100 Tethracubor-isptethriterator E100(#^^###)^#^^#>#100 Tethracubor-isptethrasquaror E100(#^^###)^#^^##100 Dutetrated-tethracubor E100(#^^###)^(#^^###)100 Tritetrated-tethracubor E100(#^^###)^(#^^###)^(#^^###)100 = E100(#^^###)^^#3 Terrible tethracubor E100(#^^###)^^#100 Terrible terrible tethracubor E100((#^^###)^^#)^^#100 = E100(#^^##)^^#>#2 Tethritertethracubor E100(#^^###)^^#>#100 Dustaculated-territethracubor E100(#^^###)^^#>(#^^###)^^#100 Tristaculated-tethracubor E100(#^^###)^^#>(#^^###)^^#>(#^^###)^^#100 = E100(#^^###)^^##3 Terrisquared-tethracubor E100(#^^###)^^##100 Territerated terrisquared-tethracubor E100((#^^###)^^##>#100 Double-terrisquared-tethracubor E100((#^^###)^^##)^^##100 Triple-terrisquared-tethracubor E100(((#^^###)^^##)^^##)^^##100 = E100(#^^###)^^##>#3 Terrisquarediter-tethracubor E100(#^^###)^^##>#100 Dustaculated-terrisquared-tethracubor E100(#^^###)^^##>(#^^###)^^##100 Tristaculated-terrisquared-tethracubor E100(#^^###)^^##>(#^^###)^^##>(#^^###)^^## = E100(#^^###)^^###3 Tethraducubor E100(#^^###)^^###100 Tethratricubor E100((#^^###)^^###)^^###100 Tethratetracubor E100(((#^^###)^^###)^^###)^^###100 = E100#^^###>#4 Tethracubiter E100#^^###>#100 Tethracubor-diterator E100#^^###>(#+#)100 = E100#^^###>##2 Tethracubo-gridulator E100#^^###>##100
Dustaculated-tethracubor E100#^^###>#^^###100 Tristaculated-tethracubor E100#^^####3 Tethrateron E100#^^####100 Now we reach a bit of trouble in naming the numbers. What should we call this? An obvious choice seems to be tethratesseract, but that’s too long. 4-dimensional figures are often called polychorons, so another choice would be tethrapolychoron, but that’s also too long. The name "polychoron" litterally means "many rooms" and polychorons are composed of multiple 3-dimensional figures, so a "choron" can be considered to be a 3-D figure. Then we can take the word “polyteron”, which is a 5-dimensional figure. We can extract the root “teron” from there and use the convenient name “tethrateron”. This is also convenient because the name “teron” directly implies four.
Comparable to tethrateron.
Tethrateron-by-dekatononE100#^^####*#11This is Sbiis Saibian's 7000th googolism, defined using Extended Cascading-E. It's approximately f _{φ(4,0)*11}(100) using the fast-growing hierarchy, and X^^X^4*11 & 100 using the climbing interpretation of BEAF.Deutero-tethrateron E100#^^####*#^^####100 Tethrateronifact E100(#^^####)^#100 Dutetrated-tethrateron E100(#^^####)^(#^^####)100 Terrible tethrateron E100(#^^####)^^#100 Territerated-tethrateron E100(#^^####)^^#>#100 Dustaculated-territethrateron E100(#^^####)^^#>(#^^####)^^#100 = E100(#^^####)^^##2 Terrisquared-territethrateron E100(#^^####)^^##100 Terricubed-tethrateron E100(#^^####)^^###100 Tethraduteron / territesserated-tethrateron E100(#^^####)^^####100 Tethratriteron E100((#^^####)^^####)^^####100 Tethriterteron E100#^^####>#100 Dustaculated-tethrateron E100#^^####>#^^####100 Tristaculated-tethrateron E100#^^#####3 Tethrapeton E100#^^#^#5 = E100#^^#5100 Similar in name to tethrateron, this is comparable to an X{6}100 array of tens. We’ll breeze through this number’s group. Deutero-tethrapeton E100#^^#5*#^^#5100 Tethrapetonifact E100(#^^#5)^#100 Terrible tethrapeton E100(#^^#5)^^#100 Terrisquared tethrapeton E100(#^^#5)^^##100 Tethradupeton E100(#^^#5)^^#5100 Tethriterpeton E100#^^#5>#100 Dustaculated-tethrapeton E100#^^#5>#^^#5100 Tethrahexon E100#^^#^#6 Tethrahepton E100#^^#^#7 Tethra-ogdon E100#^^#^#8 Tethrennon E100#^^#^#9 Tethradekon E100#^^#^#10 Tethratope / tethrahecton E100#^^#^#100 This is the beginning of the last regiment among Sbiis Saibian's hyperion-tetration numbers. Since a figure of any dimensions is called a polytope, we can just call this the tethratope. This is also known as a tethrahecton from Greek "hecto-" meaning 100. It's comparable to a X^^X^X array. Grand tethratope E100#^^#^#100#2
The Binary-Phi Range X^^X^X ~ X^^^X arrays (order type φ(w,0) ~ Γ0) Entries: 72
Grangol-carta-tethratope E100#^^#^#100#100
Gugolda-carta-tethratope E100#^^#^#100##100
Godgahlah-carta-tethratope E100#^^#^#100#^#100
Tethrathoth-carta-tethratope E100#^^#^#100#^^#100
Tethratope-by-deuteron E100#^^#^#100#^^#^#100
Tethratope-by-triton E100#^^#^#100#^^#^#100#^^#^#100
Tethratope-by-teterton E100#^^#^#*#5
Tethratope-by-hyperion E100#^^#^#*#100
Tethratope-by-deuterohyperion E100#^^#^#*##100
Tethtratope-by-godgahlah E100#^^#^#*#^#100
Tethratope-by-godgathor E100#^^#^#*#^#^#100
Tethratope-by-tethrathoth E100#^^#^#*#^^#100
Tethratope-by-tethriterator E100#^^#^#*#^^#>#100
Tethratope-by-tethrasquaror E100#^^#^#*#^^##100
Tethratope-by-tethracubor E100#^^#^#*#^^###100
Tethratope-by-tethrateron E100#^^#^#*#^^####100
Deutero-tethratope E100#^^#^#*#^^#^#100
Trito-tethratope E100#^^#^#*#^^#^#*#^^#^#100
Tethratopofact E100(#^^#^#)^#100
Terrible tethratope E100(#^^#^#)^^#100
Terrisquared tethratope E100(#^^#^#)^^##100
Tethradeutertope E100(#^^#^#)^^#^#100
Tethratritotope E100((#^^#^#)^^#^#)^^#^#100 = E100#^^(#^#)>#3
Tethritertope E100#^^(#^#)>#100
Tethriditertope E100#^^(#^#)>(#+#)100
Tethritritertope E100#^^(#^#)>##3
Tethrigriditertope E100#^^(#^#)>##100
Tethricubiculitertope E100#^^(#^#)>###100
Tethraspatialitertope E100#^^(#^#)>#^#100
Tethrathoth-turreted tethratope E100#^^(#^#)>#^^#100
Dustaculated-tethratope E100#^^(#^#)>#^^(#^#)100
Tristaculated-tethratope E100#^^(#^#)>#^^(#^#)>#^^(#^#)100 = E100#^^(#^#*#)3
Tethratopothoth E100#^^(#^#*#)100
Tethratoposquaror E100#^^(#^#*##)100
Tethratopocubor E100#^^(#^#*###)100
Tethratopodeus E100#^^(#^#*#^#)100
Tethratopotruce E100#^^(#^#*#^#*#^#)100 = E100#^^#^##3
Tethratopoquad E100#^^#^##4
Tethralattitope E100#^^#^##100
Tethralattitopodeus E100#^^(#^##*#^##)100 Triakulus 3^^^3 & 3 This is the next official Bowersism after the goppatoth. This mind-crushingly large number is an X^^^3 pentational array with tritri threes, and is the first pentational array Bowers defines. It can also be written as 3&3&3. This is the first three-based number we’ve had in quite a long time. This googologism is approximately E3#^^#^###3, placing it between tethralattitopodeus and tethralattitopotruce.
This number is also notable as the first non-degenerate legion array. The first part of legion arrays is {a,b/2} = a&a&a&a....&a with b a's - {n,2/2} arrays degenerate into linear arrays, and {1,3/2} and {2,3/2} both degenerate into 1 and 4, respectively. Therefore, triakulus is the first non-degenerate legion array. Legion arrays are further explored in part 7.
Tethracubitope E100#^^#^###100
Tethraquarticutope E100#^^#^####100
Tethrato-godgathor E100#^^#^#^#100
Tethrato-gralgathor E100#^^#^#^##100
Tethrato-godtothol E100#^^#^#^#^#100
Tethrato-tethrathoth / tethrarxitri E100#^^#^^#100
This is also expressible as E100#^^^#3.
Blooshker bundle E100#^^(#^^(100))^^#[100]100
This is one of Sbiis Saibian's irregular googolisms. Since #^^(100) decomposes to #^#^#^#^#^#^#....^# with 100 #s, so this is E100#^^(#^#^#^#........^#)^^#100 with 102 #s. Despite looks, this number isn’t much of an improvement over tethrarxitri. In fact, it’s less than E100#^^(#^#^#^#^#^#.......#^#^##)100 with 102 #s, let alone E100#^^#^^#101.
Grand tethrarxitri E100#^^#^^#100#2
Blistering blooshker bundle E100#^^(#^^(blooshker bundle))^^#[blooshker bundle]100
Or E100#^^(#^#^#^#......^#)^^#(blooshker bundle) with blooshker bundle+2 #s. Despite how amazing this sounds, it’s still less than even grand grand tethrarxitri, or E100#^^#^^#100#3.
Hectastaculated-tethrato-tethrathoth E100#^^(#^^#*#)100
Tethrato-tethrathothosquaror E100#^^(#^^#*##)100
Tethrato-tethrathothocubor E100#^^(#^^#*###)100
Tethrato-deutero-tethrathoth E100#^^(#^^#*#^^#)100
Tethrato-tethrafact E100#^^(#^^#)^#100
Tethrato-territethrathoth E100#^^(#^^#)^^#100
Tethrato-tethriterator E100#^^#^^#>#100
Not to be confused with E100(#^^#^^#)>#100. which is much smaller.
Tethrato-tethrasquare E100#^^#^^##100
Tethrato-tethratope E100#^^#^^#^#100
Brother-Giant E100#^^#^#^^#^#100
Remember the Monster-Giant, which is constructed as E100(#^^#)^(#^^#)^#100? Well, this is its brother, which is constructed the same as Monster-Giant, but with the parentheses removed, which means that it’s computed as E100#^^(#^(#^^(#^#)))100. This makes the number incomprehensibly larger. Brother-Giant is not significantly bigger than tethrato-tethratope, because #^#^^#^# is not significantly more than #^^#^#...at least from a googological point of view. It’s all too mind-boggling to really speak of.
Tethrato-tethralattitope E100#^^#^^#^##100
Tethrato-tethracubitope E100#^^#^^#^###100
Tethrarxitet E100#^^#^^#^^#100
Super-Brother-Giant E100#^^#^#^^#^#^^#^#100
Tethrarxipent E100#^^^#5
Tethrarxihex E100#^^^#6
Tethrarxihept E100#^^^#7
Tethrarxi-ogd E100#^^^#8
Tethrarxi-enn E100#^^^#9
Tethrarxideck E100#^^^#10
Tethrarxicose E100#^^^#20
Tethrarxigole E100#^^^#50 So now that that’s that ... how about some super incomprehensible higher-level arrays? Welcome to the realm of the Mighty Royals! That class is most of the whole gap between a humongulus and a golapulus, and THEN some. |