Импульс силы. Закон сохранения импульса.

Законы, сформулированных Ньютоном, позволяют решить различные практически важные задачи, касающиеся взаимодействия и движения тел. Большое число таких задач связано, например, с нахождением ускорения движущегося тела, если известны все действующие на это тело силы. А далее по ускорению можно определить и другие величины, такие как перемещение, мгновенную скорость и др.
Прежде чем сформулировать закон сохранения импульса, давайте введем понятие импульса и проследим, каким образом связано это понятие с законами Ньютона, с которыми мы познакомились ранее.
Основным законом динамики, как мы уже говорили, является второй закон Ньютона, связывающий ускорение тела с его массой m и силой , действующей на это тело:

http://www.ostu.ru/personal/sim/Concept/DAT/m1/Image232.gif

Зная связь ускорения тела со скоростью его движения и предполагая, что масса тела не изменяется с течением времени, выражение  можно переписать несколько в ином виде:


Полученное выражение показывает, что результат действия силы можно понимать и несколько иначе, чем мы делали это раньше: действие силы на тело приводит к изменению некоторой величины, характеризующей это тело, которая равна произведению массы тела на скорость его движения. Эту величину называют импульсом тела :


Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения. 

Слово "импульс" в переводе с латинского означает "толчок". В некоторых книгах вместо термина "импульс" используется термин "количество движения". 

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем. Ещё в первой половине XVII века понятие импульса введено Рене Декартом. Так как физическое понятие массы в то время отсутствовало, он определил импульс как произведение «величины тела на скорость его движения». Позже такое определение было уточнено Исааком Ньютоном. Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе». 

Поскольку  ,  то за единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скорость 1 м/с. Соответственно единицей импульса тела в СИ является 1 кг * м/c.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через  и  По третьему закону Ньютона  Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны:  Применим к этим телам второй закон Ньютона: 

где  и  – импульсы тел в начальный момент времени,  и  – импульсы тел в конце взаимодействия. Из этих соотношений следует: 

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.



Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение.

При стрельбе из орудия возникает отдача – снаряд движется вперед, а пушка– откатывается назад. Снаряд и пушка – два взаимодействующих тела. Скорость, которую приобретает пушка при отдаче, зависит только от скорости снаряда и отношения масс. Если скорости пушки и снаряда обозначить через  и  а их массы через M и m, то на основании закона сохранения импульса можно записать в проекциях на ось OX:

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю. После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

Изменение импульса тела:

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов.

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры, сила тяжести.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса  тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса; 
3) Находить изменение импульса тела




Comments