1. Yusuke Kusunoki, Yayoi Nakamura and Yoshitaka Sasaki, Analytic continuation of double polylogarithm by means of residue calculus, Comment. Math. Univ. St. Pauli, accepted. 
  2. Yasuo Ohno, Yoshitaka Sasaki, Recurrence formulas for poly-Bernoulli polynomials, to appear in Adv. Stud. Pure Math. 
  3. Yasuo Ohno, Yoshitaka Sasaki, On poly-Euler numbersJ. Aust. Math. Soc., 103 (2017), 126-144. 
  4. Yoshitaka Sasaki, Zeta Mahler measures, multiple zeta values and L-valuesInt. J. Number Theory, 7 (2015), 2239-2246. 
  5. Yasuo Ohno, Yoshitaka Sasaki, Periodicity on poly-Euler numbers and Vandiver-type congruence for Euler numbers, RIMS Kôkyûroku Bessatsu, B44 (2013), 205-212. 
  6. Yoshitaka Sasaki, Quantum Computing and Number Theory, in Kinki University Series on Quantum Computing, Vol. 6 (2012), 67-84.
  7. Wim van Dam, Yoshitaka Sasaki, Quantum algorithms for problems in number theory, algebraic geometry, and group theory, in Kinki University Series on Quantum Computing, Vol. 5 (2012), 79-106. (Arxiv:1206.6126)
  8. Yasuo Ohno, Yoshitaka Sasaki, Chika Yamazaki, On 3-variable exponential polynomials and quantum algorithms, in Kinki University Series on Quantum Computing (2012), 211-223. 
  9. Yasuo Ohno, Yoshitaka Sasaki, On the parity of poly-Euler numbersRIMS Kôkyûroku Bessatsu, B32 (2012), 271-278.
  10. Yoshitaka Sasaki, On generalized poly-Bernoulli numbers and related L-functionsJ. Number Theory, 132 (2012), 156-170.
  11. Yoshitaka Sasaki, On multiple higher Mahler measures and Witten zeta values associated with semisimple Lie algebrasCommun. Number Theory Phys. 6 (2012), 771-784.
  12. Yoshitaka Sasaki, On multiple higher Mahler measures and multiple L valuesActa Arith. 144 (2010), 159-165.
  13. Yoshitaka Sasaki, On zeros of exponential polynomials and quantum algorithmsQuantum Inf. Process. 9 (2010), 419-427.
  14. Yoshitaka Sasaki, The first derivative multiple zeta values at non-positive integersRamanujan J. 21 (2010), 267-284.
  15. Yoshitaka Sasaki, Some formulas of multiple zeta values for coordinate-wise limits at non-positive integers, "New Directions in Value-Distribution Theory of Zeta- and L-functions", R. Steuding and J. Steuding (eds.), Shaker Verlag, 2009, pp. 317-325. 
  16. Yoshitaka Sasaki, Multiple zeta values for coordinatewise limits at non-positive integersActa Arith. 136 (2009), 299-317.
  17. Yoshitaka Sasaki, An explicit formula for the square of the Riemann zeta-function in the critical stripLiet. Matem. rink. 47 (2007), 311-326.


  1. Yoshitaka Sasaki, Evaluations of multiple zeta values for various limiting processes at non-positive integers, in preparation
  2. Yasuo Ohno, Yoshitaka Sasaki, Recursion formulas for poly-Bernoulli numbers and their applications, submitted. 
  3. Y. Kusunoki, Y. Nakamura and Y. Sasaki, Functional relation formula for analytic continuation of multiple polylogarithm, submitted. 
  4. Yoshitaka Sasaki, On multiple higher Mahler measures and multiple L values II, in preparation. 
  5. Yoshitaka Sasaki, The Riemann-Siegel formula for the Dirichlet series associated with the generalized divisor function, preprint. 
  6. Yoshitaka Sasaki, On a generalization of weighted sum formula, preprint. 
  7. Yasuo Ohno, Yoshitaka Sasaki, Chika Yamazaki, On exponential polynomials and quantum computing, preprint (arXiv:0908.1027)


  1. 多重Bernoulli数の帰納的関係式とその組合せ論的解釈, to appear in 数理解析研究所講究録. 
  2. 多重ゼータ関数の不確定特異点の解消にむけて, 2015年早稲田整数論研究集会報告集, 2015.
  3. 多重Euler数とそのL関数, Proceedings of Algebra and Computation 2013, 23-36. 
  4. 多重Euler数, 研究集会「特異点と多様体の幾何学2012」報告集, 2012, 160-169. 
  5. 多重Euler数の諸性質および組合せ論的解釈について (Japanese), 第5回多重ゼータ研究集会「多重ゼータとその周辺」報告集, 2012, 101-107. [pdf]
  6. Multiple zeta values and zeta Mahler measures (Japanese), 数理解析研究所講究録, 1806, 37-41. [pdf]
  7. On the multiple higher Mahler measure and related multiple zeta values (Japanese), 数理解析研究所講究録, to appear. [pdf].
  8. 多重Euler数の諸性質と付随するL関数について (Japanese), 第4回多重ゼータ研究集会報告集, 2011, pp. 1-8. [pdf]
  9. 一般Bernoulli数のpoly化と付随するL関数の構成および諸性質について (Japanese), 数理解析研究所講究録, 1813, 183-192 (2012). [pdf]
  10. 多重高次Mahler測度とWittenの体積公式について (Japanese), 早稲田大学整数論研究集会2010報告集, 2010, pp. 58-64. [pdf]
  11. 多重高次Mahler測度とWittenゼータ値について, 第2回MZVセミナー報告集, 2010, pp. 91-99.
  12. 多重高次Mahler測度と多重L値について, 第2回MZVセミナー報告集, 2010, pp. 75-80.
  13. Weighted multiple zeta values via higher Mahler measure, 数理解析研究所講究録, 1710, 217-227 (2010).
  14. 深さ3の多重ゼータ関数の負の整数点の特殊値について, Hodge 理論・退化・特異点の代数幾何とトポロジー研究集会報告集.
  15. Multiple zeta values of depth 3 at non-positive integers, 数理解析研究所講究録, 1665, 37-43, 2009.
  16. An explicit formula for the square of the Riemann zeta-function in the critical strip, 数理解析研究所講究録, to appear.


  1. Quantum Information and Quantum Computing, Kinki University Series on Quantum Computing: Volume 6, Edited by: Mikio Nakahara, Yoshitaka Sasaki
  2. Diversities in Quantum Computation and Quantum Information, Kinki University Series on Quantum Computing: Volume 5, Edited by: Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki