Изображение призмы и построение ее сечений

Цели:

·                   показать изображение призмы и построение ее сечений

Время реализации занятия: 45 минут

Ход урока

I Организационный момент

II Проверка домашнего задания

III Изучение нового материала

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р. Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями (рис.1).

Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис.2).

На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению.

IV Закрепление изученного материала

Рассмотрим примеры построения сечений призмы.

Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис.3, а).

Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 3, б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью.

На рисунке 4 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

V Подведение итогов

Comments