Полупроводниковые приборы разрабатываются и совершенствуются в соответствии с перспективами и общими тенденциями развития радиоэлектронной аппаратуры, с учетом особенностей конкретных классов схем, в которых предполагается их использование. Выпускаемые полупроводниковые приборы исчисляются Сотнями и тысячами
наименований. Предназначенные для различных областей применения, они открывают
возможности создания принципиально новых радиотехнических устройств,
существенно расширяют и улучшают их функции и возможности Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких. Существует два основных типа транзисторов: биполярные, и полевые. В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки. Также эти типы транзисторов различаются по областям применения. биполярные используются в основном в аналоговой технике, а полевые — в цифровой. Транзисторы можно применять не только в схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия. Основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания. По виду выполняемой функции (целевому назначению) транзисторы можно разделить на усилительные, переключательные и генераторные. Общими для расчетов усилителей на транзисторах (постоянного тока, низкой частоты, промежуточной частоты, высокой частоты и др.) являются входное и выходное сопротивления каскада, соотношения, определяющие усиление, частотные свойства, режимы работы, температурная стабильность и прочие показатели. В соответствии с назначением различают каскады предварительного усиления (напряжения, тока или мощности), предназначенные для получения максимального усиления (обычно по резисториой или трансформаторной схемам), и каскады усиления мощности, обеспечивающие на заданной нагрузке необходимую (выходную) мощность при минимальных искажениях и мощности потребления от источника питания. В усилителях, имеющих хорошую температурную и режимную стабилизацию, замена транзистора на однотипный с более высоким значением h2is обычно не приводит к значительному увеличению тока коллектора в рабочей точке. Транзисторы некоторых типов используются в специфических классах схем и характеризуются рядом особенностей режима и условий работы. Эти специализированные транзисторы образуют своеобразный класс приборов, например, транзисторы для схем с автоматической регулировкой усиления (АРУ), для усилителей промежуточной частоты, для работы в микроампериом диапазоне токов, для работы в ВЧ- и СВЧ-диапазонах, лавинные транзисторы, сдвоенные, составные, двухэмиттер- Эые и т. п. Есть узлы, в которых требуются высоковольтные транзисторы. Оптимальное сочетание параметров и характеристик, удовлетворяющих различным требованиям, дает возможность использовать их в радиоэлектронной аппаратуре вместо некоторых усилительных и переключательных транзисторов (например, транзистор КТ630). Для схем с АРУ разработаны специальные транзисторы (германиевые и кремниевые), обладающие регулируемым усилением при увеличении рабочего тока (прямая АРУ). Уменьшение усиления таких транзисторов на высокой частоте происходит вследствие снижения frp при увеличении тока эмиттера и уменьшения напряжения на коллекторе (например, КТ3128, ГТ328). В связи с этим наблюдается сильная зависимость Кур от тока. Обычно транзисторы имеют меньшую зависимость коэффициента усиления от электрического режима. Для зарубежных транзисторов, предназначенных для АРУ, часто указывается глубина регулировки усиления (отношение максимального коэффициента усиления к минимальному). Жесткие требования к экономичности радиоэлектронной аппаратуры в ряде специальных применений способствовали созданию кремниевых транзисторов, функционирующих при малых токах (единицы и десятки микроампер)', поскольку германиевые транзисторы вследствие большого обратного тока коллектора для этой цели непригодны. Такие приборы (например, транзисторы КТ3102, КТ3107) имеют малые токи 1кБО и большие коэффициенты усиления. Однако при работе в микрорежиме у них ухудшаются частотные свойства, но несколько улучшаются шумовые характеристики. Кроме того, при малых токах обычно увеличивается зависимость параметров от температуры, снижается крутизна и затрудняется стабилизация режима. Реализация большого коэффициента усиления по мощности в высокочастотных усилителях связана с уменьшением паразитной обратной связи, обусловленной проходной проводимостью транзистора Yi2. Разработаны транзисторы (например, КТ339АМ), у которых для снижения емкости обратной связи в транзисторную структуру введен интегральный экран (электростатический экран Фарадея), представляющий собой сочетание диффузионного экрана и дополнительного экранирующего диода. Применение интегрального экрана позволяет снизить емкость между коллекторным и базовым выводами в 2,5...4 раза (емкость С120 снижается до значения ие более 0,3 пФ) и обеспечить большой коэффициент усиления Кур без применения схем нейтрализации. Лавинные транзисторы предназначены для работы в режиме электрического пробоя коллекторного перехода. В зависимости от схемы включения они могут иметь управляемые S-образные (со стороны коллектора или эмиттера) и N-образ- ные (со стороны базы) вольт-амперные характеристики. Использование обычных транзисторов в этом режиме принципиально возможно и встречается на практике, но при этом не обеспечиваются необходимые быстродействие, амплитуда импульсов, стабильность и надежность. Например, одной из причин, снижающих эффективность применения обычных высокочастотных транзисторов в лавинном режиме, является значительное снижение частоты frp при увеличении коллекторного тока. Лавинные транзисторы применяются в релаксационных генераторах в ждущем или автоколебательном режиме. Следует также отметить транзисторы, предназначенные для использования в инверсном включении (например, зарубежные транзисторы 2N2432, 2N2944 — 2N2946, 2N4138), которые имеют малое остаточное напряжение (менее 1 мВ) и применяются в модуляторах для стабильных усилителей постоянного тока, построенных по схеме модуляции — демодуляции, в схемах управления реверсивными двигателями, в логических схемах, амплитудных детекторах и других схемах. В некоторых схемах, например автомобильного зажигания и строчной развертки телевизоров, при запирании транзистор может переходить в режим инверсного включения при работе на комплексную нагрузку. Разработаны специальные модуляторные транзисторы, в основу которых положены две транзисторные структуры. Это так называемые двухэмиттерные транзисторы, имеющие лучшие параметры инверсного включения (например, зарубежные транзисторы 3N74—3N79, 3N108 — 3N111). У отечественного транзистора КТ118 остаточное напряжение менее 0,2 мВ. Для работы в выходных каскадах усилителя низких частот радиовещательных приемников, высококачественных магнитофонов, радио, телевизоров разработаны германиевые и кремниевые транзисторы разного типа проводимости. Они характеризуются слабой зависимостью коэффициента усиления от тока, высокой частотой fЬ21э, низким напряжением Ukb нас, что позволяет улучшить акустические показатели устройств в широком диапазоне звуковых частот. В свою очередь, это дает возможность упрощать схемы усилителей, уменьшать число применяемых транзисторов, повышать надежность и снижать себестоимость устройств. Зависимость коэффициента передачи h2ia от тока характеризуется коэффициентом линейности — отношением коэффициентов передачи при двух значениях тока эмиттера. |