Шипитько & Попов & Красильников

Классификация мутации по фенотипу:

Гипоморфные мутации — 
группа мутаций по характеру их проявления. Действуют в том же направлении, что и нормальный аллель,  но дают несколько ослабленный эффект.  Например, у дрозофилы окраска глаз при мутации значительно бледнее.


Аморфные мутации - (греч. «а» — отрицание, «морфа» — фор­ма) — группа мутаций по характеру их проявления в фенотипе. Неактивны в отношении типичного эффекта нормального аллеляНапример, ген альбинизма полностью тормозит образование пигмента у животных или хлорофилла у растений.

Антиморфные мутации - (греч. «анти» — против, «морфа» — фор­ма) — группа мутаций по характеру их проявления в фенотипе. Оказывают действие, противоположное действию нормального аллеля. Так, у кукурузы исходный аллель дает пурпурную окраску семян, а мутантный — вызывает образование бурого пигмента.


Неоморфные - (греч. «неос» — новый, «морфа» — фор­ма) — группа мутаций, нетипичных по характеру их проявле­ния в фенотипе. Их действие совершенно отлично от действия исходного нормального аллеля.

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные
. 

оценка 5;

Классификация мутаций по генотипу :

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные;
  • хромосомные;
  • генные.


При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).



  1. Генные дупликации — удвоение пары или нескольких пар нуклеотидов (удвоение пары Г—Ц).

2. Генные инсерции — вставка пары или нескольких нар нукле­отидов (вставка пары Г—Ц между А—Т и Т—А).

3.  Генные делеции — выпадение нуклеотидов (выпадение комплементарной пары Т—А между А—Т и Г—Ц).

4.  Генные инверсии — перестановка фрагмента гена (во фраг­менте исходная последовательность нуклеотидов Т—А, Г—Ц за­меняется на обратную Г—Ц, Т—А).

5.  Замены нуклеотидов — замена пары нуклеотидов на другую; при этом общее число нуклеотидов не меняется (замена Т—А на Ц—Г). Один из наиболее частых типов мутаций. Дупликации, инсерции и делеции могут приводить к измене­нию рамки считывания генетического кода. Рассмотрим это на примере. Возьмем следующую исходную последовательность нуклеотидов в ДНК (для простоты будем рассматривать только одну ее цепь): АТГАЦЦГЦГА... Она будет считываться следую­щими триплетами: АТГ, АЦЦ, ГЦГ, А... Допустим, произошла делеция, и в самом начале последовательности между А и Г вы­пал нуклеотид Т. В результате этой мутации получится изме­ненная последовательность нуклеотидов: АГАЦЦГЦГА, кото­рая уже будет считываться совершенно иными триплетами: АГА, ЦЦГ, ЦГА. Поэтому в полипептидную цепь будут соеди­няться совершенно другие аминокислоты и, таким образом, бу­дет синтезироваться мутантный белок, совершенно непохожий на нормальный. Кроме того, в результате генных мутаций, при­водящих к сдвигу рамки, могут образовываться терминирую­щие кодоны ТАА, ТАГ или ТГА, прекращающие синтез. Выпадение целого триплета приводит к менее тяжелым генети­ческим последствиям, чем выпадение одного или двух нуклео­тидов. Рассмотрим ту же нуклеотидную последовательность: АТГАЦЦГЦГА... Допустим, произошла делеция, и выпал це­лый триплет АЦЦ. Мутантный ген будет иметь измененную по­следовательность нуклеотидов АТГГЦГА, которая будет считы­ваться следующими триплетами: АТГ, ГЦГ, А... Видно, что после выпадения триплета рамка считывания не сдвинулась, синтезированный белок хоть и будет на одну аминокислоту от­личаться от нормального, но в целом будет весьма на него по­хож. Однако это отличие в аминокислотном составе может при­вести к изменению третичной структуры белка, которая в основном и определяет его функции, и функция мутантного белка, скорее всего, будет снижена по сравнению с нормальным белком. Этим и объясняется тот факт, что мутации, как прави­ло, рецессивны.

Генные мутации проявляются фенотипически в результате син­теза соответствующих белков:

10002111

Генные мутации приводят к изменению строения молекул белков и к появлению новых признаков и свойств (например, альбиносы у животных и растений, махровость у цветков за счет преобразования тычинок в лепестки и снижение их плодовитости, образование летальных и полулетальных генов, вызывающих гибель организма, и т. д.). Генные мутации происходят пoд влиянием мутагенных факторов (биологических, физических химических) или спонтанно (случайно). Генные мутации свойственны и генетической РНК вирусов.



Хромосомные мутации. Виды хромосомных мутаций.

Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. При них последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу, что пагубно сказывается на нормальном развитии организма.

Виды аберраций и их механизмы представлены на рисунке.

Хромосомные мутации. Виды хромосомных мутаций.

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.

Внутрихромосомные аберрации — аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.

Делеция — утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.

Делеции (от лат. deletio — уничтожение) — хромосомные перестройки, при которых происходит потеря участка хромосомы. Делеция может быть следствием разрыва хромосомы или результатом неравного кроссинговера. По положению утерянного участка хромосомы делеции классифицируют на внутренние (интерстициальные) и концевые (терминальные).

В зависимости от локализации утерянного участка хромосомы делеции классифицируют на:

  • интерстициальные — отсутствует внутренний участок, не затрагивающий теломеру;
  • концевые — отсутствует теломерный район и прилежащий к нему участок. Истинность таких мутаций в свете уникальной функции теломер поставлена под сомнение. В частности, до сих пор не ясно, действительно ли терминальные (концевые) нехватки, зафиксированные у множества пациентов с наследственными синдромами (например, кошачьего крика (5р14), Вольфа-Хиршхорна (4р16) и др.) образовались в результате одного разрыва.

Инверсия — встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.

Дупликация — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Дупликация (лат. duplicatio — удвоение) — мутация, нарушающая структуру хромосом, представляет собой удвоение участка хромосомы, содержащего гены. Может произойти в результате ошибки пригомологичной рекомбинацииРетротранспозиции, или из-за дубликации всех хромосомы.[1] Вторая копия гена часто не подвергается давлению селекции — так, мутация одной из копий гена не несет вреда организму. Следовательно, копии накапливают мутации быстрее, чем гены, существующие в одном экземпляре.

Дупликация является противоположностью делеции генов.

Межхромосомные аберрации — обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций: реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентри-ческая хромосома вместо двух акроцентрических).

Изохромосомные аберрации — образование одинаковых, но зеркальных фрагментов двух разных хромосом, содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название — центрическое соединение).





  

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

а) 
Полиплоидия
 - кратное увеличение числа хромосомных наборов в клетке. Обычно соматические клетки содержат диплоидный набор хромосом (2n), но иногда возникают триплоидные (3n), тетрашюидные (4n) и тл. клетки и даже целые организмы.

    Полиплоиды с повторенным несколько раз одним и тем же набором хромосом называют аутополиплоидами, а полученные от скрещивания организмов, принадлежащих к различным видам, - аллопполиоидами.

Исключительно велика роль полиплоидии в происхождении культурных растений и их селекции. Полиплоидными являются все или большинство культивируемых сортов пшеницы, овса, риса, сахарного тростника, арахиса, свеклы, картофеля, сливы, яблони, груши, апельсина, лимона, земляники, малины. К этому перечню следует добавить тимофеевку, люцерну, табак, хлопчатник, розы, тюльпаны, хризантемы, гладиолусы и многие другие, возделываемые человеком, культуры. Аутополиплоидные мутанты растений обычно крупнее исходной формы. Тетраплоиды, как правило, имеют большую вегетативную массу. Однако у них может резко уменьшиться плодовитость из-за нерасхождения поливалентов в мейозе. Триплоиды - крупные и мощные растения, но полностью или почти полностью стерильные, поскольку продуцируемые ими гаметы содержат неполный набор хромосом. Аутополинлоидные виды размножают вегетативным способом, поскольку плоды таких растений не содержат семян.

   

    
б) 
Гаплоидия -
 противоположное полиплоидии явление, заключающееся в кратном уменьшении числа хромосом у потомства в сравнении с материнской особью. Гаплоидия, как правило, - результат развития зародыша из редуцированных (гаплоидных) гамет или из функционально равноценных им клеток путём апомиксиса, т. е. без оплодотворения. Гаплоидия редко встречается в животном мире, но распространена у цветковых растений: зарегистрирована более чем у 150 видов растений из 70 родов 33 семейств (в т. ч. из семейства злаков, паслёновых, орхидных, бобовых и др.). Известна у всех основных культурных растений: пшениц, ржи, кукурузы, риса, ячменя, сорго, картофеля, табака, хлопка, льна, свёклы, капусты, тыквы, огурцов, томатов; у кормовых трав: мятликов, костра, тимофеевки, люцерны, вики и др. Гаплоидиягенетически детерминирована и встречается у некоторых видов и сортов с определённой частотой (например, у кукурузы - 1 гаплоид на 1000 диплоидных растений). В эволюции видов Гаплоидия служит своеобразным механизмом, снижающим уровень плоидностиГаплоидия пользуются для решения ряда генетических проблем: выявления эффекта дозы гена, получения анеуплоидов, для исследования генетики количественных признаков, генемного анализа и др. В селекции растений Гаплоидия пользуются для получения из гаплоидов путём удвоения у них числа хромосом гомозиготных линий, равноценных самоопылённым линиям при производстве гибридных семян (например, у кукурузы), а также для перевода селекционного процесса с полиплоидного на диплоидный уровень (например, у картофеля). Особая формаГаплоидия - андрогенез, при котором ядро спермия замещает ядро яйцеклетки, используется для получения мужских стерильных аналогов у кукурузы.

   

    в)АНЕУПЛОИДИЯ (от греч. an - отрицательная частица, eu - хорошо, вполне, - ploos - кратный и eidos - вид), гетероплоидия, явление, при котором клетки организма содержат изменённое число хромосом, не кратное гаплоидному набору. Отсутствие в хромосомном наборе диплоида одной хромосомы называют моносомией, а двух гомологичных хромосом - нуллисомией; наличие дополнительной гомологичной хромосомы называют трисомией. Организмы с такими изменениями числа хромосом называют соответственно моносомиками, нуллисомиками и трисомиками. Основной механизм возникновения анеуплоидии - нерасхождение и потери отдельных хромосом в митозе и мейозе. Вследствие нарушения баланса хромосом анеуплоидия приводит к понижению жизнеспособности и нередко к гибели анеуплоидов, особенно у животных (анеуплоидия лежит в основе ряда хромосомных болезней). В генетическом анализе с помощью анеуплоидии (скрещивая мутантов с анеуплоидами по определенным хромосомам) определяют, в какой группе сцепления находится исследуемый ген.






Генетика Человека

  • Генеологический

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения при составлении родословных

Условные обозначения, принятые при составлении родословных:
1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Типы наследования признаков

Доминантный признак — способность свертывать язык в трубочку (1) и его рецессивный аллель — отсутствие этой способности (2).
3 — родословная по полидактилии (аутосомно-доминантное наследование).

Целый ряд признаков наследуется сцепленно с полом: Х-сцепленное наследование — гемофилия, дальтонизм; Y-сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х- иY-хромосом, например общая цветовая слепота.

Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Примером этого является наследование гемофилии в царских домах Европы.

Наследование гемофилии в царских домах Европы

Наследование гемофилии в царских домах Европы:
квадратик — гемофилик; кружок — женщина-носитель.

  • Близнецовый

Этот метод используют в генетике человека для выяснения степени наследственной обусловленности исследуемых признаков. Близнецы могут быть однояйцевыми (образуются на ранних стадиях дробления зиготы, когда из двух или реже из большего числа бластомеров развиваются полноценные организмы). Однояйцевые близнецы генетически идентичны. Когда созревают и затем оплодотворяются разными сперматозоидами две или реже большее число яйцеклеток, развиваются разнояйцевые близнецы. Разнояйцевые близнецы сходны между собой не более чем братья и сестры, рожденные в разное время. Частота появления близнецов у людей составляет около 1% ( 1/3 однояйцевых, 2/3 разнояйцевых); подавляющее большинство близнецов является двойнями.
Так как наследственный материал однояйцевых близнецов одинаков, то различия, которые возникают у них, зависят от влияния среды на экспрессию генов. Сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов позволяет оценить значение наследственных и средовых факторов в развитии фенотипа человека.

  • Популяционно-статистический

Методы генетики популяций широко применяют в исследованиях человека. Внутрисемейный анализ заболеваемости неотделим от изучения наследственной патологии, как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составляет предмет популяционно-генетического исследования. Это дает информацию о степени гетерозиготности и полиморфизма человеческих популяций, выявляет различия частот аллелей между разными популяциями.
Считают, что закон Харди? Вайнберга свидетельствует о том, что наследование как таковое не меняет частоты аллелей в популяции. Этот закон вполне пригоден для анализа крупных популяций, где идет свободное скрещивание. Сумма частот аллелей одного гена, согласно формуле Харди? Вайнберга р+q=1, в генофонде популяции является величиной постоянной. Сумма частот генотипов аллелей данного гена p2+2pq+q2=1 также величина постоянная. При полном доминировании, установив в данной .популяции число рецессивных гомозигот (q2 ? число гомозиготных 'особей по рецессивному гену с генотипом аа), достаточно извлечь квадратный корень из полученной величины, и мы найдем частоту рецессивного аллеля а. Частота доминантного аллеля А составит р = 1 - q. Вычислив, таким образом, частоты аллелей а и А, можно определить частоты соответствующих генотипов в популяции (р2=АА; 2рq=Аа). Например, по данным ряда ученых, частота альбинизма (наследуется как аутосомный рецессивный признак) составляет 1:20 000 (q2). Следовательно, частота аллеля a в генофонде будет q2=l/20000 = /l4l и тогда частота аллеля А будет

p=1-q. p=1. p=1 – 1/141=140/141.

В этом случае частота гетерозиготных носителей гена альбинизма (2pq) составит 2(140/141) x (1/141) = 1/70, или 1,4%
Статистический анализ распространения отдельных наследственных признаков (генов) в популяциях людей в разных странах позволяет определить адаптивную ценность конкретных генотипов. Однажды возникнув, мутации могут передаваться потомству на протяжении многих поколений. Это приводит к полиморфизму (генетической неоднородности) человеческих популяций. Среди населения Земли практически невозможно (за исключением однояйцевых близнецов) найти генетически одинаковых людей. В гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей (генетический груз), обусловливающих развитие различных наследственных заболеваний. Частота их возникновения зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков.

  • Дермотоглифический
  • Биохимический
Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последовательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, ? гемоглобинозов. Так, при серповидноклеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин). 
В практике здравоохранения кроме выявления гомозиготных носителей мутантных генов существуют методы выявления гетерозиготных носителей некоторых рецессивных генов, что особенно важно при медико-генетическом консультировании. Так, у фенотипически нормальных гетерозигот по фенилкетонурии (рецессивный мутантный ген; у гомозигот нарушается обмен аминокислоты фенилаланина, что приводит к умственной отсталости) после приема фенилаланина обнаруживается повышенное его содержание в крови. При гемофилии гетерозиготное носительство мутантного гена может быть установлено с помощью определения активности фермента, измененного в результате мутации.
  • Цитогенетический
Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями. Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом: 22 пар аутосом и одной пары половых хромосом (XX ? у женщин, XY ? у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека. Цитологический контроль необходим для диагностики хромосомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского ? Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови ? хроническому миелолейкозу.
При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследственных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.
  • Гибридизация соматических клеток
  • Методы моделирования
  • Иммуногенетический






Comments