Apple II serie

Wish-list
  • Apple II
  • Apple //e
  • Apple //c
  • Apple IIgs

Models

The Apple II series (trademarked with square brackets as "Apple ][" and rendered on later models as "Apple //") is a family of home computers, one of the first highly successful mass-produced microcomputer products,[1] designed primarily by Steve Wozniak, manufactured by Apple Computer (now Apple Inc.) and introduced in 1977 with the original Apple II. In terms of ease of use, features and expandability, the Apple II was a major technological advancement over its predecessor, the Apple I, a limited-production bare circuit board computer for electronics hobbyists that pioneered many features that made the Apple II a commercial success. Introduced at the West Coast Computer Faire on April 16, 1977, the Apple II was among the first successful personal computers; it launched the Apple company into a successful business (and allowed several related companies to start). Throughout the years, a number of models were sold, with the most popular model remaining relatively little changed into the 1990s. While primarily an 8-bit computer, by mid-run a 16-bit model was introduced.

It was first sold on June 10, 1977.[2][3] By the end of production in 1993, somewhere between five and six million Apple II series computers (including about 1.25 million Apple IIGS models) had been produced.[4] The Apple II was one of the longest running mass-produced home computer series, with models in production just under 17 years.

The Apple II became one of several recognizable and successful computers during the 1980s and early 1990s, although this was mainly limited to the USA. It was aggressively marketed through volume discounts and manufacturing arrangements to educational institutions which made it the first computer in widespread use in American secondary schools, displacing the early leader Commodore PET. The effort to develop educational and business software for the Apple II, including the 1979 release of the popular VisiCalc spreadsheet, made the computer especially popular with business users and families.[5][6][7]

The original Apple II operating system was in ROM along with Integer BASIC. Programs were entered, then saved and loaded on cassette tape. When the Disk II was implemented in 1978 by Steve Wozniak, a Disk Operating System or DOS was commissioned from the company Shepardson[8][9] where its development was done by Paul Laughton.[10] The final and most popular version of this software was Apple DOS 3.3. Some commercial Apple II software booted directly and did not use standard DOS formats. This discouraged the copying or modifying of the software on the disks and improved loading speed. Apple DOS was superseded by ProDOS, which supported a hierarchical filesystem and larger storage devices. With an optional third-party Z80-based expansion card[11] the Apple II could boot into the CP/M operating system and run WordStar, dBase II, and other CP/M software. At the height of its evolution, towards the late 1980s, the platform had the graphical look of a hybrid of the Apple II and Macintosh with the introduction of the Apple IIGS. By 1992, the platform had 16-bit processing capabilities, a mouse-driven graphical user interface, and graphics and sound capabilities far beyond the original.

Despite the introduction of the Motorola 68000-based Apple Macintosh in 1984 the Apple II series still reportedly accounted for 85% of the company's sales in the first quarter of fiscal 1985,[12] and remained the company's primary revenue source for most of the following decade.[citation needed] At its peak, it was a billion-dollar-a-year industry with its associated community of third-party developers and retailers. The Apple IIGS was sold until the end of 1992; the last II-series Apple in production, the IIe, was discontinued on October 15, 1993.

Source: Wikipedia

Apple II

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) The first Apple II computers went on sale on June 10, 1977[2][3] with a MOS Technology 6502 (later Synertek)[15] microprocessor running at 1 MHz, 4 KB of RAM, an audio cassette interface for loading programs and storing data, and the Integer BASIC programming language built into the ROMs. The video controller displayed 40 columns by 24 lines of monochrome, upper-case-only (the original character set matches ASCII characters 0x20 to 0x5F) text on the screen, with NTSC composite video output suitable for display on a TV monitor, or on a regular TV set by way of a separate RF modulator. The original retail price of the computer was US$1298[16][17](with 4 kB of RAM) and US$2638 (with the maximum 48 kB of RAM). To reflect the computer's color graphics capability, the Apple logo on the casing was represented using rainbow stripes,[18] which remained a part of Apple's corporate logo until early 1998. The earliest Apple IIs were assembled in Silicon Valley, and later in Texas;[19] printed circuit boards were manufactured in Ireland and Singapore.

An external 5¼-inch floppy disk drive, the Disk II, attached via a controller card that plugged into one of the computer's expansion slots (usually slot 6), was used for data storage and retrieval to replace cassettes. The Disk II interface, created by Steve Wozniak, was regarded as an engineering masterpiece for its economy of electronic components.[20][21] While other controllers had dozens of chips for synchronizing data I/O with disk rotation, seeking the head to the appropriate track, and encoding the data into magnetic pulses, Wozniak's controller card had few chips; instead, the Apple DOS used software to perform these functions. The Group Code Recording used by the controller was simpler and easier to implement in software than the more common MFM. In the end, the low chip count of the controller helped make Apple's Disk II the first affordable floppy drive for personal computers. As a side effect, Wozniak's scheme made it easy for proprietary software developers to copy-protect the media on which their software shipped by changing the low-level sector format or stepping the drive's head between the tracks; inevitably, other companies eventually sold software to foil this protection. Another Wozniak optimization allowed him to omit Shugart's Track-0 sensor. When the Operating System wants to go to track 0, the controller simply moves 40 times toward the next-lower-numbered track, relying on the mechanical stop to prevent it going any further down than track 0. This process, called "recalibration", made a loud buzzing (rapid mechanical chattering) sound that often frightened Apple novices.

The approach taken in the Disk II controller was typical of Wozniak's design sensibility. The Apple II used several engineering shortcuts to save hardware and reduce costs. For example, taking advantage of the way that 6502 instructions only access memory every other clock cycle, the video generation circuitry's memory access on the otherwise unused cycles avoided memory contention issues and also eliminated the need for a separate refresh circuit for the DRAM chips. Rather than use a complex analog-to-digital circuit to read the outputs of the game controller, Wozniak used a simple timer circuit whose period was proportional to the resistance of the game controller, and used a software loop to measure the timer.

The text and graphics screens had a complex arrangement (the scanlines were not stored in sequential areas of memory) which was reputedly due to Wozniak's realization that doing it that way would save a chip; it was less expensive to have software calculate or look up the address of the required scanline than to include the extra hardware. Similarly, in the high-resolution graphics mode, color was determined by pixel position and could thus be implemented in software, saving Wozniak the chips needed to convert bit patterns to colors. This also allowed for sub-pixel font rendering since orange and blue pixels appeared half a pixel-width further to the right on the screen than green and purple pixels.[22]

Color on the Apple II series took advantage of a quirk of the NTSC television signal standard, which made color display relatively easy and inexpensive to implement. The original NTSC television signal specification was black-and-white. Color was tacked on later by adding a 3.58-MHz subcarrier signal that was partially ignored by B&W TV sets. Color is encoded based on the phase of this signal in relation to a reference color burst signal. The result is that the position, size, and intensity of a series of pulses define color information. These pulses can translate into pixels on the computer screen.

The Apple II display provided two pixels per subcarrier cycle. When the color burst reference signal was turned on and the computer attached to a color display, it could display green by showing one alternating pattern of pixels, magenta with an opposite pattern of alternating pixels, and white by placing two pixels next to each other. Later, blue and orange became available by tweaking the offset of the pixels by half a pixel-width in relation to the colorburst signal. The high-resolution display offered more colors simply by compressing more, narrower pixels into each subcarrier cycle. The coarse, low-resolution graphics display mode worked differently, as it could output a short burst of high-frequency signal per pixel to offer more color options.

The epitome[by whom?] of the Apple II design philosophy was the Apple II sound circuitry. Rather than having a dedicated sound-synthesis chip, the Apple II had a toggle circuit that could only emit a click through a built-in speaker or a line out jack; all other sounds (including two, three and, eventually, four-voice music and playback of audio samples and speech synthesis) were generated entirely by software that clicked the speaker at just the right times. Not for nearly a decade would an Apple II be released with a dedicated sound chip (though with six expansion slots, users could add sound functionality with various sound cards). Similar techniques were used for cassette storage: the cassette output worked the same as the speaker, and the input was a simple zero-crossing detector that served as a crude (1-bit) audio digitizer. Routines in the ROM were used to encode and decode data in frequency-shift keying for the cassette. Since the Apple II mainboard had no interrupts, it was impossible to use the speaker without taking CPU time and so most games had little sound.

Wozniak's open design and the Apple II's multiple expansion slots permitted a wide variety of third-party devices, including Apple II peripheral cards such as serial controllers, display controllers, memory boards, hard disks, networking components, and realtime clocks. There were plug-in expansion cards – such as the Z-80 SoftCard[11] – that permitted the Apple to use the Z80 processor and run a multitude of programs developed under the CP/M operating system,[11] including the dBase II database and the WordStar word processor. There was also a third-party 6809 card that would allow OS-9 Level One to be run. Third-party sound cards greatly improved audio capabilities, allowing simple music synthesis and text-to-speech functions. Eventually, Apple II accelerator cards were created to double or quadruple the computer's speed.

Rod Holt is credited (for example in the Walter Isaacson biography of Jobs) with the design of the Apple II's power supply. He employed a Switched-mode power supply design. This was far smaller and generated less unwanted heat than the linear power supply some other home computers used.[23] Isaacson quotes Wozniak saying that this was not something he could have done; "I only knew vaguely what a switching power supply was."[24]

The original Apple II was discontinued at the start of 1981, having been superseded by the II+. An estimated 40,000 machines were sold for its 4-year production run.[

Source: Wikipedia

Instances

Apple II Plus

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) The Apple II Plus, introduced in June 1979,[25][26][27][28] included the Applesoft BASIC programming language in ROM. This Microsoft-authored dialect of BASIC, which was previously available as an upgrade, supported floating-point arithmetic, and became the standard BASIC dialect on the Apple II series (though it ran at a noticeably slower speed than Steve Wozniak's Integer BASIC).

Except for improved graphics and disk-booting support in the ROM, and the removal of the 2k 6502 assembler/disassembler to make room for the floating point BASIC, the II+ was otherwise identical to the original II. RAM prices fell during 1980–81 and all II+ machines came from the factory with a full 48k of memory already installed. The language card in Slot 0 added another 16k, but it had to be bank switched since the remaining CPU address space was occupied by the ROMs and I/O area. For this reason, the extra RAM in the language card was bank-switched over the machine's built-in ROM, allowing code loaded into the additional memory to be used as if it actually were ROM. Users could thus load Integer BASIC into the language card from disk and switch between the Integer and Applesoft dialects of BASIC with DOS 3.3's INT and FP commands just as if they had the BASIC ROM expansion card. The language card was also required to use the UCSD Pascal and FORTRAN 77 compilers, which were released by Apple at about the same time. These ran under the UCSD p-System operating system, which had its own disk format and emitted code for a "virtual machine" rather than the actual 6502 processor.

A TEMPEST-approved version of the Apple II Plus was created in 1980 by the Georgia Tech Research Institute for U.S. Army FORSCOM, and used as a component in the earliest versions of the Microfix system. Fielded in 1982, the Microfix system was the first tactical system using video disk (Laserdisc) map technology providing zoom and scroll over map imagery coupled with a point database of intelligence data such as order of battle, airfields, roadways, and bridges.

Source: Wikipedia

Instances

Apple II Europlus and J-Plus

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) After the success of the first Apple II in the United States, Apple expanded its market to include Europe, Australia and the Far East in 1979, with the Apple II Europlus (Europe, Australia) and the Apple II J-Plus (Japan). In these models, Apple made the necessary hardware, software and firmware changes in order to comply to standards outside of the U.S. The power supply was modified to accept the local voltage, and in the European and Australian model the video output signal was changed from color NTSC to monochrome PAL – an extra video card was needed for color PAL graphics, since the simple tricks Wozniak had used to generate a pseudo-NTSC signal with minimal hardware did not carry over to the more complex PAL system. In the Japanese version of the international Apple, the keyboard layout was changed to allow for Katakana writing (full Kanji support was clearly beyond the capabilities of the machine), but in most other countries the international Apple was sold with an unmodified American keyboard; thus the German model still lacked the umlauts, for example. For the most part, the Apple II Europlus and J-Plus were identical to the Apple II Plus. Production of the Europlus ended in 1983.

Source: Wikipedia

Instances

Apple IIe

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) The Apple II Plus was followed in 1983 by the Apple IIe, a cost-reduced yet more powerful machine that used newer chips to reduce the component count and add new features, such as the display of upper and lowercase letters and a standard 64 kB of RAM.

The IIe RAM was configured as if it were a 48 kB Apple II Plus with a language card; the machine had no slot 0, but instead had an auxiliary slot that for most practical purposes took the place of slot 3, the most commonly used slot for 80-column cards in the II Plus.

The auxiliary slot could accept a 1 kB memory card to enable the 80-column display. This card contained only RAM; the hardware and firmware for the 80-column display was built into the Apple IIe, remaining fairly compatible with the older Videx-style cards, even though the low-level details were very different. An "extended 80-column card" with more memory expanded the machine's RAM to 128 kB.

As with the language card, the memory in the 80-column card was bank-switched over the machine's main RAM; this made the memory better suited to data storage than to running software, and in fact the ProDOS operating system, which was introduced with the Apple IIe, would automatically configure this memory as a RAM disk upon booting.

Third-party aux-slot memory cards later allowed expansion up to 1 MB. The 1 K 80-column card also enabled one new graphics mode, Double Lo-Res (80×48 pixels). The extended 80-column card enabled two, Double Lo-Res and Double Hi-Res (560×192 pixels). Both modes doubled the horizontal resolution in comparison to the standard Lo-Res (40×48) and Hi-Res (280×192) Modes; in the case of Double Hi-Res, the number of available colors was increased as well, from 6 to 15. Apple IIes from the very first production run could not use Double Hi-Res. Neither of these modes was directly supported by the built-in BASIC, however, so the user had to resort to the use of lots of POKE and CALL commands in BASIC, or assembly language programming, or one of a number of software Toolkits to exploit these modes.

While it was possible for software to switch out the 80-column firmware, making the firmware of a card in slot 3 available with a card in the auxiliary slot, it was not a common thing to do. However, even with the 80-column firmware enabled, slot 3's I/O memory range was still usable, giving it approximately the capability of slot 0 on a II or II plus. This meant that it actually was possible to use slot 3 for things, such as coprocessor cards and language cards, that did not use slot firmware space.

Introduced with the IIe was the DuoDisk, essentially two Disk II 5.25-inch drives in a single enclosure designed to stack between the computer and the monitor, and a new controller card to run it. This controller was (by design) functionally identical to the original Disk II controller but used a different connector, allowing a single cable to control both drives in the DuoDisk. The DuoDisk was plagued by reliability problems, however, and did not catch on as well as the Apple IIe itself.

The Apple IIe was the most popular Apple II ever built and was widely considered the "workhorse" of the line. It also has the distinction of being the longest-lived Apple computer of all time – it was manufactured and sold with only minor changes for nearly 11 years. In that time, following the original, two important variations were introduced known as the Apple IIe Enhanced (four new replacement chips to give it some of the features of the later model Apple IIc, including an upgraded processor called the 65C02) and the Apple IIe Platinum (a modernized new look for the case color to match other Apple products of the era, along with the addition of a built-in numeric keypad). An Enhanced IIe with 128 kB of RAM can be considered the minimum requirement for running most Apple II software released after about 1988. //e models were distinguished from the standard IIe by having 128k of memory, DHGR graphics mode, and a 65C02 CPU.

Two and a half years before the Apple IIe, Apple produced and unsuccessfully marketed a computer called the Apple III for business users. Some of its features were carried over in the design of the Apple IIe. Among them was the ProDOS operating system, which was based on Apple III's Sophisticated Operating System (SOS).

Source: Wikipedia

Revision A motherboard
At the time of the Apple IIe's introduction, and well into the first few months of production, this motherboard shipped with all units. Graphics modes supported are identical, and limited to, that of the Apple II Plus before it. The logic board is not compatible with the ROM-based firmware update (introduced some years later) and most newer plug-in expansion slot cards.
Revision B motherboard
Shortly after the "Revision A" motherboard's release in 1983, engineers discovered that the bank-switching feature (which used a paralleled 64 KB of RAM on the Extended 80 Column Card; or 1 KB to produce 80 columns using bank-switching) could also be used to produce a new graphics mode, Double-High-Resolution, which doubles the horizontal resolution and increases the number of colors from the 6 of standard High-Resolution to 15. In order to support this, some modifications had to be made to the motherboard, which became the Revision B. In addition to supporting Double-High-Resolution and a rarely used Double-Low-Resolution mode (see list above) it also added a special video signal accessible in slot 7.

Apple upgraded the motherboard free of charge. In later years Apple labeled newer IIe motherboards with a "-A" suffix once again, although in terms of functionality they were Revision B motherboards.
New case and keyboard
In 1984, Apple revised the case and keyboard. The original IIe uses a case very similar to the Apple II Plus, painted and with Velcro-type clips to secure the lid with a strip of metal mesh along the edge to eliminate radio frequency interference. The new case is made of dyed plastic mold in a slightly darker beige with a simplified snap-case lid. The other noticeable change is a new keyboard, with more professional-looking print on darker keycaps (small black lettering, versus large white print). This was the first cosmetic change.
Enhanced IIe
Although Apple hoped that 1984's Apple IIc would outsell the IIe, the latter was more popular because of its slots.[12] In March 1985, the company replaced the original machine with a new revision called the Enhanced IIe. It is completely identical to the previous machine except for 4 chips changed on the motherboard (and a small "Enhanced" or "65C02" sticker placed over the keyboard power indicator). The purpose of the update was to make the Apple IIe more compatible with the Apple IIc (released the previous year) and, to a smaller degree, the Apple II Plus. This change involved a new processor, the CMOS-based 65C02 CPU, a new character ROM for the text modes, and two new ROM firmware chips. The 65C02 added more CPU instructions, the new character ROM added 32 special "MouseText" characters (which allowed the creation of a GUI-like display in text mode, similar to IBM code page 437), and the new ROM firmware fixed problems and speed issues with 80-column text, introduced the ability to use lowercase in Applesoft BASIC and Monitor, and contained some other smaller improvements (and fixes) in the latter two (including the return of the Mini-Assembler—which had vanished with the introduction of the II Plus firmware).

Although it affected compatibility with a small number of software titles (particularly those that did not follow Apple programming guidelines and rules, used illegal opcodes that were no longer available in the new CPU, or used the alternate 80-column character set that MouseText now occupied) a fair bit of newer software — mostly productivity applications and utilities — required the Enhanced chipset to run at all. An official upgrade kit, consisting of the four replacement chips and an "Enhanced" sticker badge, was made available for purchase to owners of the original Apple IIe. An alternative at the time, which some users choose as a cost-cutting measure, was to simply purchase their own 65C02 CPU and create (unlicensed and illegal) duplicates of the updated ROMs using re-rewritable EPROM chips. When Apple phased out the Enhancement kit in the early 1990s, this became the only available method for users looking to upgrade their IIe, and remains so right up until present day. An Enhanced machine identifies itself with the name "Apple //e" on its start up splash screen (as opposed to the less-specific "Apple ][").
Platinum IIe
In January 1987 came the final revision of the Apple IIe, often referred to as the Platinum IIe, due to the color change of its case to the light-grey color scheme that Apple dubbed "Platinum". Changes to this revision were mostly cosmetic to modernize the look of the machine. Besides the color change, there was a new keyboard layout with built-in numeric keypad. The keyboard was changed to match the layout of the Apple IIGS, with the reset key moved above the ESC and '1' keys, the Open and Solid Apple modifier keys replaced by Command and Option and the power LED relocated above the numeric keypad. Gone were the recessed metal ID badges (showing the Apple logo and name, with "//e" beside it) replaced with a simpler "Apple IIe" silk screened on the case lid in the Apple Garamond font. A smaller Apple logo badge remained, which was moved to the right side of the case.

Internally, a (reduced in size) Extended 80 Columns Card was factory pre-installed, making it come standard with 128 KB RAM and Double-Hi-Res graphics enabled. The motherboard has a reduced chip count by merging the two system ROM chips into one and used higher density memory chips so its 64 KB RAM could be made up of two (64 Kbx4) chips rather than eight (64 Kbx1) chips, bringing the count down to a total of 24 chips. A solder pad location on the motherboard, present since the original IIe, for (optionally) making presses of the "Shift" keys detectable in software, is now shorted by default so that the feature is always active. Next, in a move to reduce radio frequency interference when a joystick plugs into the motherboard's Game I/O socket, filtering capacitors were added. While this made no difference to the average user, it had the negative effect of lowering the available bandwidth to the socket, which is often used by specialized devices for such purposes as measuring temperature, controlling a robotic device, or even simplistic networking for data transfer to another computer. In such cases the specialized devices were rendered useless on the Platinum IIe unless the user removed the capacitors from the board.

There were no firmware changes present, and functionally the motherboard is otherwise identical to the Enhanced IIe. This final model of the Apple IIe was discontinued on November 15, 1993, officially retiring the entire Apple II family line with it.
Instances

Apple IIc

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) Apple released the Apple IIc in April 1984, billing it as a portable Apple II, because it could be easily carried, though unlike modern portables it lacked a built-in display and battery. The IIc even sported a carrying handle that folded down to prop the machine up into a typing position. It was the first of three Apple II models to be made in the Snow White design language, and the only one that used its unique creamy off-white color.[32] (The other Snow White computers from the Apple II series, the IIGS and the IIc Plus, were light gray, called "Platinum" by Apple.) The obsolete cassette port was omitted from the IIc.

The Apple IIc was the first Apple II to use the 65C02 low-power variant of the 6502 processor, and featured a built-in 5.25-inch floppy drive and 128 kB RAM, with a built-in disk controller that could control external drives, composite video (NTSC or PAL), serial interfaces for modem and printer, and a port usable by either a joystick or mouse. Unlike previous Apple II models, the IIc had no internal expansion slots at all, this being the means by which its compact size was attained. Third parties did eventually figure out how to wedge up to 1 MB of additional memory and a real-time clock into the machine, and a later revision of the motherboard provided an expansion slot that could accept an Apple memory card bearing up to 1 MB of RAM. The disk port, originally intended for a second 5.25-inch floppy drive, eventually was able to interface to 3½-inch disk drives and (via third parties) even hard disks.

IIc machines supported the 16 color DHGR (double hi-resolution graphics) graphics mode and from a software standpoint were identical to the //e.

To play up the portability, two different monochrome LCD displays were sold for use with the IIc's video expansion port, although both were short-lived due to high cost and poor legibility. (An Apple IIc with the smaller of these displays appeared briefly in the film 2010.) The IIc had an external power supply that converted AC power to 12 V DC, allowing third parties to offer battery packs and automobile power adapters that connected in place of the supplied AC adapter.

The Apple IIc (in its American version) was the first microcomputer to include support for the Dvorak Simplified Keyboard, which was activated using a switch above the keyboard. This feature was also later found in late-model American Apple IIe computers (though the switch was inside the computer) and in the Apple IIGS (accessible via the built-in control panel). The international models used the same mechanism to switch between the localized and the American keyboard layouts, but did not offer Dvorak.

Source: Wikipedia

Instances
  • H0000168 (Serial Number: E6470FKA2S4100X)

Apple IIgs

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) The next member of the line was the Apple IIGS computer, released on September 15, 1986. A radical departure from the existing Apple II line, the IIGS featured a true 16-bit microprocessor, the 65C816, operating at 2.8 MHz with 24-bit addressing, allowing expansion up to 8 MB of RAM without the bank-switching hassles of the earlier machines (RAM cards with more than 4 MB were never directly supported by Apple[33]). It introduced two completely new graphic modes sporting higher resolutions with a palette of 4,096 colors and up to 256 colors on screen; however, only 4 (at 640×200 resolution) or 16 (at 320×200 resolution) colors could be used on a single line at a time.[34]

In a departure from earlier Apple II graphics modes, the new modes laid out the scanlines sequentially in memory and up to 16 scanline changes could be made (i.e. 16 palettes of 16 distinct colors each, equals 256 colors) without slowing down the CPU. However, programmers in search of a graphics challenge could always turn to 3200-color mode, which involved precisely swapping in a different 16-color palette for each of the screen's 200 scanlines as the monitor's electron beam traced the screen line by line. This exotic technique did not leave many CPU cycles available for other processing, so this "mode" was best suited to displaying static images.

The Apple IIGS stood out from any previous (or future) Apple II models, evolving and advancing the platform into the next generation of computing while still maintaining near-complete backward compatibility. The secret of the Apple IIGS's compatibility was a single chip called the Mega II, which contained the functional equivalent of an entire Apple IIe computer (sans processor). This, combined with the flawless 65C02 emulation mode of the 65C816 processor, provided full support for legacy software.

The computer also included a 32-voice Ensoniq 5503 DOC 'wavetable' sample-based sound synthesizer chip with 64 kB dedicated RAM,[35] 256 kB (or later 1.125 MB) of standard RAM, built-in peripheral ports (switchable between IIe-style card slots and IIc-style onboard controllers for disk drives, mouse, RGB video, and serial devices), built-in AppleTalk networking, and a ROM toolbox that supported a graphical user interface derived from the Macintosh toolbox. The computer could run existing 8-bit Apple II software (including software written for the very first Apple II in Integer BASIC), but also supported 16-bit software running under a new (albeit modified) OS called ProDOS 16 and later replaced by a full 16-bit OS called GS/OS.[34] The new OS eventually included a Finder that could be used for managing disks and files and opening documents and applications, along with desk accessories – just like the Macintosh. The 16-bit operating system would automatically switch to the text display and downshift to 8-bit mode to run legacy software, while offering a consistent, Macintosh-like graphical interface for native 16-bit applications. Eventually, the IIGS gained the ability to read and write Macintosh disks and, through third-party software, even multitasking (both cooperative and preemptive, the latter in the form of a Unix-type shell), outline TrueType font support, and in one case, even real-time 3D gaming using texture mapping.

The first 50,000 Apple IIGS computers came with Steve Wozniak's "Woz" signature silkscreened on the front and were referred to as the "Woz Limited Edition". These machines are not functionally different from machines from the same time period without the signature.

Source: Wikipedia

Instances
  • H0000170 (Serial Number: E903RCKA2S6000X)
  • H0000171 (Serial Number: E903R6BA2S6000X)
  • H0000172 (Serial Number: E0201E2A0012X/A)

Apple IIc Plus

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) The final Apple II model was the Apple IIc Plus introduced in 1988. It was the same size and shape as the IIc that came before it, but the 5.25-inch floppy drive had been replaced with a 3½-inch drive, the power supply was moved inside (gone was the IIc's "brick on a leash" power supply), and the processor was a fast 4 MHz 65C02 processor that actually ran 8-bit Apple II software faster than the IIGS. (Third-party accelerators for other models could, however, go as fast as 10 MHz, and IIGS accelerators would eventually reach 16 MHz.) The IIc Plus's accelerator was derived from a design licensed from Zip Technologies, a third-party maker of accelerators for the Apple II, though Apple used separate chips instead of combining the processor, cache, and supporting logic on a multi-chip module as did Zip. Like later models of the original Apple IIc, the IIc Plus included a memory expansion slot that would accept a daughter-card carrying up to a megabyte of RAM. The IIc Plus also featured a new keyboard layout that matched the Platinum IIe and IIGS. Unlike the IIe, IIc and IIGS, the IIc Plus came only in one version (American) and was not officially sold anywhere outside the USA.

Many perceived the IIc Plus as Apple's attempt to compete with the Laser 128EX/2, a popular third party Apple-compatible machine that also had an accelerated processor and a built-in 3.5-inch drive. There were few other rational explanations for Apple expending resources on the continued development of a new 8-bit Apple II model rather than furthering the 16-bit Apple IIGS. However, with its 3.5-inch drive and speedy processor, it provided a compact machine for running the AppleWorks integrated productivity package, especially with the 1 MB memory upgrade.

Source: Wikipedia

Instances

Apple IIe Card

Configurations

Technical Specifications

Description

Apple iBook G4/1.0 14-Inch (Early 2004 - Opaque White) Although not an extension of the Apple II line, in 1990 the Apple IIe Card, an expansion card for the LC line of Macintosh computers, was released. Essentially a miniaturized Apple IIe computer on a card (using the Mega II chip from the Apple IIGS), it allowed the Macintosh to run 8-bit Apple IIe software through hardware emulation (although video was emulated in software and was slower at times than a IIe). Many of the LC's built-in Macintosh peripherals could be "borrowed" by the card when in Apple II mode (i.e. extra RAM, 3.5-inch floppy, AppleTalk networking, hard disk). The IIe card could not, however, run software intended for the 16-bit Apple IIGS. The Macintosh LC with IIe Card was intended to replace the Apple IIGS in schools and homes and was presumably the reason a new model Apple IIGS that was confirmed by insiders to be in development at one point was cancelled and never released.

Source: Wikipedia

Instances

Specifications

Instances

External links

Files

Nothing yet

Photographs

Nothing yet
Descriptions provided by Every Mac and/or Low End Mac | Contacts: afberendsen AT gmail DOT com
Comments