Carbon K-edge

Lab D93: 

Eric Haugen, Enrico Ridente

Efficient Table-Top Dual-Wavelength Beamline for Ultrafast Transient Absorption Spectroscopy in the Soft X-Ray Region

Sci. Rep. 10, 5573 (2020)

Lou Barreau, Andrew D. Ross, Samay Garg, Peter M. Kraus, Daniel M. Neumark and Stephen R. Leone

We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of  ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge.

Lab D40 East: 

X-Ray Transient Absorption Reveals the 1Au (nπ*) State of Pyrazine in Electronic Relaxation

Nat. Comm. 12, 5003 (2021)

Valeriu Scutelnic, Shota Tsuru, Mátyás Pápai, Zheyue Yang, Michael Epshtein, Tian Xue, Eric Haugen, Yuki Kobayashi, Anna I. Krylov, Klaus B. Møller, Sonia Coriani and Stephen R. Leone

Electronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.