Тема 1.3. Электромагнетизм.

Открытие электромагнетизма

Ханс Кристиан Эрстед

Первооткрывателем электромагнетизма считается датский физик Ханс Кристиан Э́рстед, обнаруживший воздействие электрического тока на магнит.

До начала XIX века никто не предполагал, что электричество и магнетизм что-то связывает. И даже разделы физики, в которых они рассматривались, были разными. Доказательство существования такой связи было получено Эрстедом в 1820 г. во время проведения опыта на лекции в университете. На экспериментальном столе рядом с проводником тока находился магнитный компас. В момент замыкания электрической цепи магнитная стрелка компаса отклонилась от своего первоначального положения. Повторив опыт, Эрстед получил такой же результат.

Силовые линии проводника с током

Как и магнитное поле, образованное постоянным магнитом, магнитное поле проводника с током характеризуется силовыми линиями.

Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.

Но если придать проводнику другую форму, картина будет иная.

Магнитное поле катушки с током:

Магнитное поле соленоида

Изогнув спиралью проводник с током, мы получим соленоид (от греческого «трубка»). Силовые линии создаваемого им магнитного поля представляют собой замкнутые линии. Наиболее часто они расположены внутри витков.

Если намотать изолированную проволоку на каркас таким образом, чтобы витки располагались вплотную друг к другу, то получится катушка. При пропускании через неё тока создаётся магнитное поле, и катушка начинает притягивать металлические предметы. Это притяжение значительно усиливается, если вставить в катушку стальной или железный стержень, который называют сердечником. Ток создаёт магнитное поле, которое намагничивает сердечник. Затем магнитное поле сердечника складывается с магнитным полем самого соленоида, тем самым увеличивая его. Катушку с сердечником называют электромагнитом.

Простейший электромагнит

Магнитное поле электромагнита можно регулировать, увеличивая или уменьшая силу тока или количество витков в обмотке. Каждый виток создаёт своё магнитное поле. И чем больше витков в электромагните, тем сильнее его поле. Соответственно, если уменьшить количество витков, то магнитное поле ослабляется.

Первый электромагнит создал английский инженер Уильям Стёрджен в 1825 г. Его устройство представляло собой стержень изогнутой формы, сделанный из мягкого железа и покрытый лаком для изоляции от провода. На стержень был намотан толстый провод из меди.

Рисунок электромагнита Стёрджена

В современных электромагнитах сердечники изготавливают из ферромагнетиков – веществ, которые обладают высокой намагниченностью при температуре ниже точки Кюри даже в отсутствии внешнего магнитного поля. Для обмотки применяют изолированный алюминиевый или медный провод.

Параллельные проводники в магнитном поле.

Проводники с током в магнитном поле

Продолжив исследования Эрстеда, Ампер подтвердил магнитное действие электрического тока, обнаружив, что проводники с током взаимодействуют друг с другом. Причём, если токи в параллельных проводниках текут в одном направлении, то проводники притягиваются. Если же направление токов в таких проводниках противоположно, то они отталкиваются. Более того, Ампер вывел закон, названный впоследствии его именем (закон Ампера), и позволяющий определять величину силы, с которой взаимодействуют проводники с током.

Нужно заметить, что Ампер исследовал проводник в магнитном поле, созданном не постоянным магнитом, а другим проводником с током.

Два параллельных проводника с током взаимодействуют с силой, пропорциональной величинам токов в элементарных отрезках и обратно пропорциональной расстоянию между ними.

Объединив электричество и магнетизм, Ампер назвал новую область физики электродинамикой.

Магнитное поле. Индукция.

Давно известно, что кусочки магнитного железняка способны притягивать к себе металлические предметы: гвозди, гайки, металлические опилки, иголки и др. Такой способностью их наделила природа. Это естественные магниты.

Подвергнем воздействию естественного магнита брусок из железа. Через некоторое время он сам намагнитится и начнёт притягивать другие металлические предметы. Брусок стал искусственным магнитом. Уберём магнит. Если намагничивание при этом исчезнет, то говорят о временном намагничивании. Если же оно останется, то перед нами постоянный магнит.

Концы магнита, притягивающие металлические предметы наиболее сильно, называют полюсами магнита. Слабее всего притяжение в его средней зоне. Её называют нейтральной зоной.

Если к средней части магнита прикрепить нить и позволить ему свободно вращаться, подвесив его к штативу, то он развернётся таким образом, что один из его полюсов будет ориентирован строго на север, а другой строго на юг. Конец магнита, обращённый на север, называют северным полюсом (N), а противоположный – южным (S).

Взаимодействие магнитов.

Магнит притягивает другие магниты, не соприкасаясь с ними. Одноимённые полюсы разных магнитов отталкиваются, а разноимённые притягиваются. Не правда ли, это напоминает взаимодействие электрических зарядов?

Электрические заряды оказывают действие друг на друга с помощью электрического поля, образующегося вокруг них. Постоянные магниты взаимодействуют на расстоянии, потому что вокруг них существует магнитное поле.

Физики XIX века пытались представить магнитное поле как аналог электростатического. Они рассматривали полюсы магнита как положительный и отрицательный магнитные заряды (северный и южный полюсы соответственно). Но вскоре поняли, что изолированных магнитных зарядов не существует.

Два одинаковых по величине, но разных по знаку электрических заряда называют электрическим диполем. Магнит имеет два полюса и является магнитным диполем.

Заряды в электрическом диполе можно легко отделить друг от друга, разрезав на две части проводник, в разных частях которого они находятся. Но с магнитом так не получится. Разделив таким же способом постоянный магнит, мы получим два новых магнита, каждый из которых тоже будет иметь два магнитных полюса.

И сколько бы не делили их дальше, всё равно будут получаться магнитные диполи.

Тела, имеющие собственное магнитное поле, называются магнитами. Различные материалы по-разному притягиваются к ним. Это зависит от структуры материала. Свойство материалов создавать магнитное поле под воздействием внешнего магнитного поля, называется магнетизмом.

Наиболее сильно притягиваются к магнитам ферромагнетики. Причём их собственное магнитное поле, создаваемое молекулами, атомами или ионами, в сотни раз превосходит вызвавшее его внешнее магнитное поле. Ферромагнетиками являются такие химические элементы, как железо, кобальт, никель, а также некоторые сплавы.

Парамагнетики – вещества, намагничивающиеся во внешнем поле в его направлении. Притягиваются к магнитам слабо. Химические элементы алюминий, натрий, магний, соли железа, кобальта, никеля и др. – примеры парамагнетиков.

Но есть материалы, которые не притягиваются, а отталкиваются от магнитов. Их называют диамагнетиками. Они намагничиваются против направления внешнего магнитного поля, но отталкиваются от магнитов довольно слабо. Это медь, серебро, цинк, золото, ртуть и др.

Магнитная индукция.

Силовой характеристикой магнитного поля является магнитная индукция. Это векторная величина, определяющая его действие на движущиеся заряды в данной точке поля.

Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки, находящейся в магнитном поле. Единица измерения магнитной индукции в системе СИ – тесла (Тл). Измеряют магнитную индукции приборами, которые называются тесламетрами.

Если векторы магнитной индукции поля одинаковы по величине и направлению во всех точках поля, то такое поле называется однородным.

Графически магнитное поле изображают с помощью силовых линий.

Силовыми линиями, или линиями магнитной индукции, называют линии, касательные к которым в данной точке совпадают с направлением вектора магнитной индукции. Густота этих линий отображает величину вектора магнитной индукции.

Картину расположения этих линий можно получить с помощью простого опыта. Рассыпав на куске гладкого картона или стекла железные опилки и положив его на магнит, можно увидеть, как опилки располагаются по определённым линиям. Эти линии имеют форму силовых линий магнитного поля.

Линии магнитной индукции всегда замкнуты. Они не имеют ни начала, ни конца. Выходя из северного полюса, они входят в южный и замыкаются внутри магнита.

Поля с замкнутыми векторными линиями называются вихревыми. Следовательно, магнитное поле является вихревым. В каждой его точке вектор магнитной индукции имеет своё направление. Его определяют по направлению магнитной стрелки в этой точке или по правилу буравчика (для магнитного поля вокруг проводника с током).

Правило буравчика (винта) и правило правой руки

Эти правила дают возможность просто и довольно точно определить направление линий магнитной индукции, не используя никаких физических приборов.

Чтобы понять, как работает правило буравчика, представим себе, что правой рукой мы вкручиваем бур или штопор.

Если направление поступательного движения буравчика совпадает с направлением движения тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

Разновидностью данного правила является правило правой руки.

Если мысленно обхватить правой рукой проводник с током таким образом, чтобы отогнутый на 90° большой палец показывал направление тока, то остальные пальцы покажут направление линий магнитной индукции поля, создаваемого этим током, и направление вектора магнитной индукции, направленного по касательной к этим линиям.

Закон Ампера.

Андре Мари Ампер

В результате проведенных опытов учёный выяснил, что на прямой проводник с током, находящийся в магнитном поле с индукцией В, со стороны поля действует сила F, пропорциональная силе тока и индукции магнитного поля. Этот закон получил название закона Ампера, а силу назвали силой Ампера.

F = I·L·B·sinα,

где I – сила тока в проводнике;

L - длина проводника в магнитном поле;

B - модуль вектора индукции магнитного поля;

α - угол между вектором магнитного поля и направлением тока в проводнике.

Сила Ампера имеет максимальное значение, если угол α равен 900.

Направление силы Ампера удобно определять по правилу левой руки.

Располагаем левую руку таким образом, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда отогнутый на 900 большой палец укажет направление силы Ампера.

Наблюдая взаимодействие двух тонких проводников с током, учёный выяснил, что параллельные проводники с током, притягиваются, если токи в них текут в одном направлении, и отталкиваются, если направления токов противоположны.

Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину

Φ = B · S · cos α,

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея.

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Φ = LI.

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.